Loading…

Kinetics and Mechanisms of Aggregative Nanocrystal Growth

The aggregative growth and oriented attachment of nanocrystals and nanoparticles are reviewed, and they are contrasted to classical LaMer nucleation and growth, and to Ostwald ripening. Kinetic and mechanistic models are presented, and experiments directly observing aggregative growth and oriented a...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2014-01, Vol.26 (1), p.5-21
Main Authors: Wang, Fudong, Richards, Vernal N, Shields, Shawn P, Buhro, William E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a360t-655ea51501ec3bf7c81585e62d9f45fbf3ad10665716eca6849be0b15cbc507b3
cites cdi_FETCH-LOGICAL-a360t-655ea51501ec3bf7c81585e62d9f45fbf3ad10665716eca6849be0b15cbc507b3
container_end_page 21
container_issue 1
container_start_page 5
container_title Chemistry of materials
container_volume 26
creator Wang, Fudong
Richards, Vernal N
Shields, Shawn P
Buhro, William E
description The aggregative growth and oriented attachment of nanocrystals and nanoparticles are reviewed, and they are contrasted to classical LaMer nucleation and growth, and to Ostwald ripening. Kinetic and mechanistic models are presented, and experiments directly observing aggregative growth and oriented attachment are summarized. Aggregative growth is described as a nonclassical nucleation and growth process. The concept of a nucleation function is introduced, and approximated with a Gaussian form. The height (Γmax) and width (Δt n) of the nucleation function are systematically varied by conditions that influence the colloidal stability of the small, primary nanocrystals participating in aggregative growth. The nucleation parameters Γmax and Δt n correlate with the final nanocrystal mean size and size distribution, affording a potential means of achieving nucleation control in nanocrystal synthesis.
doi_str_mv 10.1021/cm402139r
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm402139r</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c239559226</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-655ea51501ec3bf7c81585e62d9f45fbf3ad10665716eca6849be0b15cbc507b3</originalsourceid><addsrcrecordid>eNptj7FOwzAURS0EEqEw8AdeGBgC7yV5TjJWFRREgQXm6Nmx01RNguwA6t83qIiJ6SxHV_cIcYlwg5DgremyCWnpj0SElEBMAMmxiKAo8zjLSZ2KsxA2ADjpRSTKp7a3Y2uC5L6Wz9asuW9DF-Tg5LxpvG14bL-sfOF-MH4XRt7KpR--x_W5OHG8DfbilzPxfn_3tniIV6_Lx8V8FXOqYIwVkWVCArQm1S43BVJBViV16TJy2qVcIyhFOSprWBVZqS1oJKMNQa7Tmbg-7Bo_hOCtqz5827HfVQjVT3P11zy5VweXTag2w6fvp2f_eHufV1U9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetics and Mechanisms of Aggregative Nanocrystal Growth</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Fudong ; Richards, Vernal N ; Shields, Shawn P ; Buhro, William E</creator><creatorcontrib>Wang, Fudong ; Richards, Vernal N ; Shields, Shawn P ; Buhro, William E</creatorcontrib><description>The aggregative growth and oriented attachment of nanocrystals and nanoparticles are reviewed, and they are contrasted to classical LaMer nucleation and growth, and to Ostwald ripening. Kinetic and mechanistic models are presented, and experiments directly observing aggregative growth and oriented attachment are summarized. Aggregative growth is described as a nonclassical nucleation and growth process. The concept of a nucleation function is introduced, and approximated with a Gaussian form. The height (Γmax) and width (Δt n) of the nucleation function are systematically varied by conditions that influence the colloidal stability of the small, primary nanocrystals participating in aggregative growth. The nucleation parameters Γmax and Δt n correlate with the final nanocrystal mean size and size distribution, affording a potential means of achieving nucleation control in nanocrystal synthesis.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm402139r</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2014-01, Vol.26 (1), p.5-21</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-655ea51501ec3bf7c81585e62d9f45fbf3ad10665716eca6849be0b15cbc507b3</citedby><cites>FETCH-LOGICAL-a360t-655ea51501ec3bf7c81585e62d9f45fbf3ad10665716eca6849be0b15cbc507b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Fudong</creatorcontrib><creatorcontrib>Richards, Vernal N</creatorcontrib><creatorcontrib>Shields, Shawn P</creatorcontrib><creatorcontrib>Buhro, William E</creatorcontrib><title>Kinetics and Mechanisms of Aggregative Nanocrystal Growth</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The aggregative growth and oriented attachment of nanocrystals and nanoparticles are reviewed, and they are contrasted to classical LaMer nucleation and growth, and to Ostwald ripening. Kinetic and mechanistic models are presented, and experiments directly observing aggregative growth and oriented attachment are summarized. Aggregative growth is described as a nonclassical nucleation and growth process. The concept of a nucleation function is introduced, and approximated with a Gaussian form. The height (Γmax) and width (Δt n) of the nucleation function are systematically varied by conditions that influence the colloidal stability of the small, primary nanocrystals participating in aggregative growth. The nucleation parameters Γmax and Δt n correlate with the final nanocrystal mean size and size distribution, affording a potential means of achieving nucleation control in nanocrystal synthesis.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptj7FOwzAURS0EEqEw8AdeGBgC7yV5TjJWFRREgQXm6Nmx01RNguwA6t83qIiJ6SxHV_cIcYlwg5DgremyCWnpj0SElEBMAMmxiKAo8zjLSZ2KsxA2ADjpRSTKp7a3Y2uC5L6Wz9asuW9DF-Tg5LxpvG14bL-sfOF-MH4XRt7KpR--x_W5OHG8DfbilzPxfn_3tniIV6_Lx8V8FXOqYIwVkWVCArQm1S43BVJBViV16TJy2qVcIyhFOSprWBVZqS1oJKMNQa7Tmbg-7Bo_hOCtqz5827HfVQjVT3P11zy5VweXTag2w6fvp2f_eHufV1U9</recordid><startdate>20140114</startdate><enddate>20140114</enddate><creator>Wang, Fudong</creator><creator>Richards, Vernal N</creator><creator>Shields, Shawn P</creator><creator>Buhro, William E</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140114</creationdate><title>Kinetics and Mechanisms of Aggregative Nanocrystal Growth</title><author>Wang, Fudong ; Richards, Vernal N ; Shields, Shawn P ; Buhro, William E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-655ea51501ec3bf7c81585e62d9f45fbf3ad10665716eca6849be0b15cbc507b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fudong</creatorcontrib><creatorcontrib>Richards, Vernal N</creatorcontrib><creatorcontrib>Shields, Shawn P</creatorcontrib><creatorcontrib>Buhro, William E</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fudong</au><au>Richards, Vernal N</au><au>Shields, Shawn P</au><au>Buhro, William E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics and Mechanisms of Aggregative Nanocrystal Growth</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2014-01-14</date><risdate>2014</risdate><volume>26</volume><issue>1</issue><spage>5</spage><epage>21</epage><pages>5-21</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The aggregative growth and oriented attachment of nanocrystals and nanoparticles are reviewed, and they are contrasted to classical LaMer nucleation and growth, and to Ostwald ripening. Kinetic and mechanistic models are presented, and experiments directly observing aggregative growth and oriented attachment are summarized. Aggregative growth is described as a nonclassical nucleation and growth process. The concept of a nucleation function is introduced, and approximated with a Gaussian form. The height (Γmax) and width (Δt n) of the nucleation function are systematically varied by conditions that influence the colloidal stability of the small, primary nanocrystals participating in aggregative growth. The nucleation parameters Γmax and Δt n correlate with the final nanocrystal mean size and size distribution, affording a potential means of achieving nucleation control in nanocrystal synthesis.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm402139r</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2014-01, Vol.26 (1), p.5-21
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_cm402139r
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Kinetics and Mechanisms of Aggregative Nanocrystal Growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20and%20Mechanisms%20of%20Aggregative%20Nanocrystal%20Growth&rft.jtitle=Chemistry%20of%20materials&rft.au=Wang,%20Fudong&rft.date=2014-01-14&rft.volume=26&rft.issue=1&rft.spage=5&rft.epage=21&rft.pages=5-21&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm402139r&rft_dat=%3Cacs_cross%3Ec239559226%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a360t-655ea51501ec3bf7c81585e62d9f45fbf3ad10665716eca6849be0b15cbc507b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true