Loading…
Spin-Coated CdS Thin Films for n-Channel Thin Film Transistors
Low-cost and high-performance materials fabricated at low temperatures via solution processes are of great interest in the field of printable and flexible electronics. We have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transi...
Saved in:
Published in: | Chemistry of materials 2009-02, Vol.21 (4), p.604-611 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low-cost and high-performance materials fabricated at low temperatures via solution processes are of great interest in the field of printable and flexible electronics. We have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol−gel reaction for the deposition of a spin-coated CdS film that can then be converted to a xerogel material. By carrying out the spin-coating of a L2Cd(S(CO)CH3)2 (L = 3,5-lutidine) precursor, which condenses at low temperatures to form a CdS network, and then hard-baking at 300 °C under atmospheric pressure, microscopically flat films were successfully obtained. To determine the field effect mobilities of the spin-coated CdS films, we constructed TFTs with an inverted structure consisting of Mo gate electrodes and ZrO2 gate dielectrics. These devices exhibited n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ∼48 cm2V−1 s−1) and a low voltage operation ( |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm801557q |