Loading…

New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides

Thermoelectric power generation is foreseen to play a much larger role in the near future, considering the need for alternative energies because of declining natural resources as well as the increasing efficiency of thermoelectric materials. The latter is a consequence of the discoveries of new mate...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2010-02, Vol.22 (3), p.604-611
Main Author: Kleinke, Holger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermoelectric power generation is foreseen to play a much larger role in the near future, considering the need for alternative energies because of declining natural resources as well as the increasing efficiency of thermoelectric materials. The latter is a consequence of the discoveries of new materials as well as of improvements of established materials by, for example, nanostructuring or band structure engineering. Within this review, two major classes of high-temperature thermoelectrics are presented: clathrates formed by silicides and germanides, and complex antimonides including but not limited to the filled skutterudites. The clathrates and the skutterudites are cage compounds that exhibit low thermal conductivity, reportedly related to the rattling effect of the guest atoms, whereas the other antimonides achieve low thermal conductivity via defects or simply via the high complexity of their crystal structures.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm901591d