Loading…
Hybrid Core−Shell Nanoparticles: Photoinduced Electron-Transfer for Charge Separation and Solar Cell Applications
We report growth and formation of hybrid core−shell nanoparticle systems, where photoinduced electron-transfer takes place from the II−VI semiconducting core to an organic shell. With the hybrid core−shell nanoparticles, we fabricate devices so that the photoinduced electron-transfer can finally yie...
Saved in:
Published in: | Chemistry of materials 2009-11, Vol.21 (21), p.5292-5299 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report growth and formation of hybrid core−shell nanoparticle systems, where photoinduced electron-transfer takes place from the II−VI semiconducting core to an organic shell. With the hybrid core−shell nanoparticles, we fabricate devices so that the photoinduced electron-transfer can finally yield photocurrent and result photovoltaic solar cells. Formation of an organic shell-layer on CdSe nanoparticles is supported by electronic absorption spectroscopy. Electron-transfer from the nanoparticle in the core to a number of organic molecules in the shell is established from quenching of photoluminescence intensity of CdSe nanoparticles as well as from a change in the lifetime of photoluminescence emission. Devices based on the hybrid core−shell nanoparticles in a suitable hole-transporting layer with two dissimilar metal electrodes show efficient photovoltaic performance. Here, following the electron-transfer, electrons flow through the organic molecules and holes, left in the nanoparticles, move through the hole-transporting polymer to the opposite electrodes to yield photovoltaic short-circuit current. The role of CdSe nanoparticles in light-harvesting and charge-generation has been substantiated by control experiments with ZnS nanoparticles in the core. In ZnS-based hybrid core−shell systems, photovoltaic performance is low since photoinduced electron-transfer does not occur from ZnS to the dye. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm902404s |