Loading…

Hybrid Core−Shell Nanoparticles: Photoinduced Electron-Transfer for Charge Separation and Solar Cell Applications

We report growth and formation of hybrid core−shell nanoparticle systems, where photoinduced electron-transfer takes place from the II−VI semiconducting core to an organic shell. With the hybrid core−shell nanoparticles, we fabricate devices so that the photoinduced electron-transfer can finally yie...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2009-11, Vol.21 (21), p.5292-5299
Main Authors: Guchhait, Asim, Rath, Arup K, Pal, Amlan J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report growth and formation of hybrid core−shell nanoparticle systems, where photoinduced electron-transfer takes place from the II−VI semiconducting core to an organic shell. With the hybrid core−shell nanoparticles, we fabricate devices so that the photoinduced electron-transfer can finally yield photocurrent and result photovoltaic solar cells. Formation of an organic shell-layer on CdSe nanoparticles is supported by electronic absorption spectroscopy. Electron-transfer from the nanoparticle in the core to a number of organic molecules in the shell is established from quenching of photoluminescence intensity of CdSe nanoparticles as well as from a change in the lifetime of photoluminescence emission. Devices based on the hybrid core−shell nanoparticles in a suitable hole-transporting layer with two dissimilar metal electrodes show efficient photovoltaic performance. Here, following the electron-transfer, electrons flow through the organic molecules and holes, left in the nanoparticles, move through the hole-transporting polymer to the opposite electrodes to yield photovoltaic short-circuit current. The role of CdSe nanoparticles in light-harvesting and charge-generation has been substantiated by control experiments with ZnS nanoparticles in the core. In ZnS-based hybrid core−shell systems, photovoltaic performance is low since photoinduced electron-transfer does not occur from ZnS to the dye.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm902404s