Loading…

Core–Shell-Structured Titanosilicate As A Robust Catalyst for Cyclohexanone Ammoximation

Core–shell-structured MWW-type titanosilicate (Ti-MWW) with a well-defined micro-meso hierarchical porosity was fabricated by using self-assembly technique. This composite material Ti-MWW@meso-SiO2 was applied as the catalyst for the ammoximation of cyclohexanone in a continuous slurry reactor. The...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2013-01, Vol.3 (1), p.103-110
Main Authors: Xu, Le, Peng, Hong-gen, Zhang, Kun, Wu, Haihong, Chen, Li, Liu, Yueming, Wu, Peng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Core–shell-structured MWW-type titanosilicate (Ti-MWW) with a well-defined micro-meso hierarchical porosity was fabricated by using self-assembly technique. This composite material Ti-MWW@meso-SiO2 was applied as the catalyst for the ammoximation of cyclohexanone in a continuous slurry reactor. The combination of characterizations, such as XRD, SEM, HR-TEM, and N2 adsorption, verified that the composite material was composed of zeolite crystallites as core and mesosilica as shell and that the micropores and mesopores were penetrated well with each other, which significantly facilitated the diffusion of large molecules. In continuous ammoximation of cyclohexanone as a probe reaction, the composite exhibited significantly prolonged lifetime in comparison to the parent Ti-MWW catalyst and the physical mixture of Ti-MWW and mesosilica. The unique catalytic behaviors of Ti-MWW@meso-SiO2 were ascribed to protecting effect of the mesosilica shell. It served as a sacrificial lamb that protected the active component of zeolite core against rapid desilication and coke formation, leading to a stable duration of the catalysts.
ISSN:2155-5435
2155-5435
DOI:10.1021/cs3006007