Loading…

Bifunctional Adsorbent-Catalytic Nanoparticles for the Refining of Renewable Feedstocks

A hybrid adsorbent-catalytic nanostructured material consisting of aminopropyl groups and nickel nanoparticles immobilized in mesoporous silica nanoparticles (AP-Ni-MSN) was employed to selectively capture free fatty acids (FFAs) and convert them into saturated hydrocarbons. The working principle of...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2013-12, Vol.3 (12), p.2750-2758
Main Authors: Kandel, Kapil, Frederickson, Conerd, Smith, Erica A, Lee, Young-Jin, Slowing, Igor I
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A hybrid adsorbent-catalytic nanostructured material consisting of aminopropyl groups and nickel nanoparticles immobilized in mesoporous silica nanoparticles (AP-Ni-MSN) was employed to selectively capture free fatty acids (FFAs) and convert them into saturated hydrocarbons. The working principle of these sorbent-catalytic particles was initially tested in the hydrogenation of oleic acid. Besides providing selectivity for the capture of FFAs, the adsorbent groups also affected the selectivity of the hydrogenation reaction, shifting the chemistry from hydrocracking-based (Ni) to hydrotreating-based and improving the carbon economy of the process. This approach was ultimately evaluated by the selective sequestration of FFAs from crude microalgal oil and their subsequent conversion into liquid hydrocarbons, demonstrating the suitability of this design for the refinery of renewable feedstocks.
ISSN:2155-5435
2155-5435
DOI:10.1021/cs4008039