Loading…

The Rise of Calcination Temperature Enhances the Performance of Cu Catalysts: Contributions of Support

To develop the high-performance supported metal catalyst for industrial processes, it is highly desirable to elucidate and fully utilize the indispensable support part. Herein, the relationship between catalytic performance and the structure of support ZrO2 was elucidated by comprehensive analysis o...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2014-10, Vol.4 (10), p.3675-3681
Main Authors: Zhu, Yifeng, Kong, Xiao, Cao, Dong-Bo, Cui, Jinglei, Zhu, Yulei, Li, Yong-Wang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To develop the high-performance supported metal catalyst for industrial processes, it is highly desirable to elucidate and fully utilize the indispensable support part. Herein, the relationship between catalytic performance and the structure of support ZrO2 was elucidated by comprehensive analysis of the progressive calcination experiments, tests over model catalysts, and various characterizations of catalyst structures. We demonstrated that combination of Cu and tetragonal ZrO2 makes a highly active, selective, and especially stable catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol. To obtain stable Cu particles, the catalyst was annealed at high temperatures (e.g., from 450 to 850 °C). The stable large Cu particles were formed, and the number of exposed Cu sites decreased. Fortunately, support ZrO2 was motivated into the tetragonal phase, compensating for and even improving the activity. Thus, the yield of ethylene glycol was greatly improved from ∼26 to 99%, and a stable performance was achieved (life span of >600 h). The strategy alleviated the dependence of hydrogenation on highly dispersed metal sites and provided an alternative way to enhance the catalytic stability. This simple way simultaneously improved the efficiency and reduced the level of irreversible deactivation due to sintering, which has great potential for industrial applications. Tetragonal ZrO2 also proved to be effective for a series of carbonyl hydrogenations (e.g., esters, aldehydes, ketones, and acids), indicating a general promotion of these reactions by ZrO2.
ISSN:2155-5435
2155-5435
DOI:10.1021/cs501155x