Loading…
Comprehensive Study of Biomass Particle Combustion
This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the d...
Saved in:
Published in: | Energy & fuels 2008-07, Vol.22 (4), p.2826-2839 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3 |
container_end_page | 2839 |
container_issue | 4 |
container_start_page | 2826 |
container_title | Energy & fuels |
container_volume | 22 |
creator | Lu, Hong Robert, Warren Peirce, Gregory Ripa, Bryan Baxter, Larry L |
description | This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the drying, rapid pyrolysis, gasification, and char oxidation processes of particles with different shapes. The model characterizes particles in three basic shapes (sphere, cylinder, and flat plate). With the particle geometric information (particle aspect ratio, volume, and surface area) included, this model can be modified to simulate the combustion process of biomass particles of any shape. The model also predicts the surrounding flame combustion behaviors of a single particle. Model simulations of the three shapes agree nearly within experimental uncertainty with the data. Investigations show that spherical mathematical approximations for fuels that either originate in or form aspherical shapes during combustion poorly represent combustion behavior when particle size exceeds a few hundred microns. This includes a large fraction of the particles in both biomass and black liquor combustion. In particular, composition and temperature gradients in particles strongly influence the predicted and measured rates of temperature rise and combustion, with large particles reacting more slowly than is predicted from isothermal models. |
doi_str_mv | 10.1021/ef800006z |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ef800006z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_VPG43CP1_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3</originalsourceid><addsrcrecordid>eNptj01Lw0AQhhdRsFYP_oNcPHiI7vfHUYNWoWCg1esy2exiapuU3VSsv96USr04lznM877Dg9AlwTcEU3Lrg8bDyO8jNCKC4lxgao7RCGutciwpP0VnKS12CNNihGjRrdbRv_s2NZ8-m_Wbept1IbtvuhWklJUQ-8YtfTZw1Sb1Tdeeo5MAy-QvfvcYvT4-zIunfPoyeS7upjkwqvrcmaA51RU4U0ktvWM1x5VjoETFKu4FAyMZN0HWOBghqOKaS2YMlwq49myMrve9LnYpRR_sOjYriFtLsN3J2oPswF7t2TUkB8sQoXVNOgQoFsRwIgcu33NN6v3X4Q7xw0rFlLDzcmbfyglnRUks-esFl-yi28R2MP7n_w9Og23h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comprehensive Study of Biomass Particle Combustion</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lu, Hong ; Robert, Warren ; Peirce, Gregory ; Ripa, Bryan ; Baxter, Larry L</creator><creatorcontrib>Lu, Hong ; Robert, Warren ; Peirce, Gregory ; Ripa, Bryan ; Baxter, Larry L</creatorcontrib><description>This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the drying, rapid pyrolysis, gasification, and char oxidation processes of particles with different shapes. The model characterizes particles in three basic shapes (sphere, cylinder, and flat plate). With the particle geometric information (particle aspect ratio, volume, and surface area) included, this model can be modified to simulate the combustion process of biomass particles of any shape. The model also predicts the surrounding flame combustion behaviors of a single particle. Model simulations of the three shapes agree nearly within experimental uncertainty with the data. Investigations show that spherical mathematical approximations for fuels that either originate in or form aspherical shapes during combustion poorly represent combustion behavior when particle size exceeds a few hundred microns. This includes a large fraction of the particles in both biomass and black liquor combustion. In particular, composition and temperature gradients in particles strongly influence the predicted and measured rates of temperature rise and combustion, with large particles reacting more slowly than is predicted from isothermal models.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/ef800006z</identifier><identifier>CODEN: ENFUEM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biomass ; Combustion of solid fuels ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Natural energy ; Renewable Energy ; Theoretical studies. Data and constants. Metering</subject><ispartof>Energy & fuels, 2008-07, Vol.22 (4), p.2826-2839</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3</citedby><cites>FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20519416$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Hong</creatorcontrib><creatorcontrib>Robert, Warren</creatorcontrib><creatorcontrib>Peirce, Gregory</creatorcontrib><creatorcontrib>Ripa, Bryan</creatorcontrib><creatorcontrib>Baxter, Larry L</creatorcontrib><title>Comprehensive Study of Biomass Particle Combustion</title><title>Energy & fuels</title><addtitle>Energy Fuels</addtitle><description>This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the drying, rapid pyrolysis, gasification, and char oxidation processes of particles with different shapes. The model characterizes particles in three basic shapes (sphere, cylinder, and flat plate). With the particle geometric information (particle aspect ratio, volume, and surface area) included, this model can be modified to simulate the combustion process of biomass particles of any shape. The model also predicts the surrounding flame combustion behaviors of a single particle. Model simulations of the three shapes agree nearly within experimental uncertainty with the data. Investigations show that spherical mathematical approximations for fuels that either originate in or form aspherical shapes during combustion poorly represent combustion behavior when particle size exceeds a few hundred microns. This includes a large fraction of the particles in both biomass and black liquor combustion. In particular, composition and temperature gradients in particles strongly influence the predicted and measured rates of temperature rise and combustion, with large particles reacting more slowly than is predicted from isothermal models.</description><subject>Applied sciences</subject><subject>Biomass</subject><subject>Combustion of solid fuels</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Renewable Energy</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptj01Lw0AQhhdRsFYP_oNcPHiI7vfHUYNWoWCg1esy2exiapuU3VSsv96USr04lznM877Dg9AlwTcEU3Lrg8bDyO8jNCKC4lxgao7RCGutciwpP0VnKS12CNNihGjRrdbRv_s2NZ8-m_Wbept1IbtvuhWklJUQ-8YtfTZw1Sb1Tdeeo5MAy-QvfvcYvT4-zIunfPoyeS7upjkwqvrcmaA51RU4U0ktvWM1x5VjoETFKu4FAyMZN0HWOBghqOKaS2YMlwq49myMrve9LnYpRR_sOjYriFtLsN3J2oPswF7t2TUkB8sQoXVNOgQoFsRwIgcu33NN6v3X4Q7xw0rFlLDzcmbfyglnRUks-esFl-yi28R2MP7n_w9Og23h</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Lu, Hong</creator><creator>Robert, Warren</creator><creator>Peirce, Gregory</creator><creator>Ripa, Bryan</creator><creator>Baxter, Larry L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080701</creationdate><title>Comprehensive Study of Biomass Particle Combustion</title><author>Lu, Hong ; Robert, Warren ; Peirce, Gregory ; Ripa, Bryan ; Baxter, Larry L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Biomass</topic><topic>Combustion of solid fuels</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Renewable Energy</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hong</creatorcontrib><creatorcontrib>Robert, Warren</creatorcontrib><creatorcontrib>Peirce, Gregory</creatorcontrib><creatorcontrib>Ripa, Bryan</creatorcontrib><creatorcontrib>Baxter, Larry L</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hong</au><au>Robert, Warren</au><au>Peirce, Gregory</au><au>Ripa, Bryan</au><au>Baxter, Larry L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Study of Biomass Particle Combustion</atitle><jtitle>Energy & fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>22</volume><issue>4</issue><spage>2826</spage><epage>2839</epage><pages>2826-2839</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><coden>ENFUEM</coden><abstract>This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the drying, rapid pyrolysis, gasification, and char oxidation processes of particles with different shapes. The model characterizes particles in three basic shapes (sphere, cylinder, and flat plate). With the particle geometric information (particle aspect ratio, volume, and surface area) included, this model can be modified to simulate the combustion process of biomass particles of any shape. The model also predicts the surrounding flame combustion behaviors of a single particle. Model simulations of the three shapes agree nearly within experimental uncertainty with the data. Investigations show that spherical mathematical approximations for fuels that either originate in or form aspherical shapes during combustion poorly represent combustion behavior when particle size exceeds a few hundred microns. This includes a large fraction of the particles in both biomass and black liquor combustion. In particular, composition and temperature gradients in particles strongly influence the predicted and measured rates of temperature rise and combustion, with large particles reacting more slowly than is predicted from isothermal models.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ef800006z</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-0624 |
ispartof | Energy & fuels, 2008-07, Vol.22 (4), p.2826-2839 |
issn | 0887-0624 1520-5029 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ef800006z |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Biomass Combustion of solid fuels Combustion. Flame Energy Energy. Thermal use of fuels Exact sciences and technology Natural energy Renewable Energy Theoretical studies. Data and constants. Metering |
title | Comprehensive Study of Biomass Particle Combustion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Study%20of%20Biomass%20Particle%20Combustion&rft.jtitle=Energy%20&%20fuels&rft.au=Lu,%20Hong&rft.date=2008-07-01&rft.volume=22&rft.issue=4&rft.spage=2826&rft.epage=2839&rft.pages=2826-2839&rft.issn=0887-0624&rft.eissn=1520-5029&rft.coden=ENFUEM&rft_id=info:doi/10.1021/ef800006z&rft_dat=%3Cistex_cross%3Eark_67375_TPS_VPG43CP1_1%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |