Loading…

Comprehensive Study of Biomass Particle Combustion

This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the d...

Full description

Saved in:
Bibliographic Details
Published in:Energy & fuels 2008-07, Vol.22 (4), p.2826-2839
Main Authors: Lu, Hong, Robert, Warren, Peirce, Gregory, Ripa, Bryan, Baxter, Larry L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3
cites cdi_FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3
container_end_page 2839
container_issue 4
container_start_page 2826
container_title Energy & fuels
container_volume 22
creator Lu, Hong
Robert, Warren
Peirce, Gregory
Ripa, Bryan
Baxter, Larry L
description This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the drying, rapid pyrolysis, gasification, and char oxidation processes of particles with different shapes. The model characterizes particles in three basic shapes (sphere, cylinder, and flat plate). With the particle geometric information (particle aspect ratio, volume, and surface area) included, this model can be modified to simulate the combustion process of biomass particles of any shape. The model also predicts the surrounding flame combustion behaviors of a single particle. Model simulations of the three shapes agree nearly within experimental uncertainty with the data. Investigations show that spherical mathematical approximations for fuels that either originate in or form aspherical shapes during combustion poorly represent combustion behavior when particle size exceeds a few hundred microns. This includes a large fraction of the particles in both biomass and black liquor combustion. In particular, composition and temperature gradients in particles strongly influence the predicted and measured rates of temperature rise and combustion, with large particles reacting more slowly than is predicted from isothermal models.
doi_str_mv 10.1021/ef800006z
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ef800006z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_VPG43CP1_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3</originalsourceid><addsrcrecordid>eNptj01Lw0AQhhdRsFYP_oNcPHiI7vfHUYNWoWCg1esy2exiapuU3VSsv96USr04lznM877Dg9AlwTcEU3Lrg8bDyO8jNCKC4lxgao7RCGutciwpP0VnKS12CNNihGjRrdbRv_s2NZ8-m_Wbept1IbtvuhWklJUQ-8YtfTZw1Sb1Tdeeo5MAy-QvfvcYvT4-zIunfPoyeS7upjkwqvrcmaA51RU4U0ktvWM1x5VjoETFKu4FAyMZN0HWOBghqOKaS2YMlwq49myMrve9LnYpRR_sOjYriFtLsN3J2oPswF7t2TUkB8sQoXVNOgQoFsRwIgcu33NN6v3X4Q7xw0rFlLDzcmbfyglnRUks-esFl-yi28R2MP7n_w9Og23h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comprehensive Study of Biomass Particle Combustion</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lu, Hong ; Robert, Warren ; Peirce, Gregory ; Ripa, Bryan ; Baxter, Larry L</creator><creatorcontrib>Lu, Hong ; Robert, Warren ; Peirce, Gregory ; Ripa, Bryan ; Baxter, Larry L</creatorcontrib><description>This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the drying, rapid pyrolysis, gasification, and char oxidation processes of particles with different shapes. The model characterizes particles in three basic shapes (sphere, cylinder, and flat plate). With the particle geometric information (particle aspect ratio, volume, and surface area) included, this model can be modified to simulate the combustion process of biomass particles of any shape. The model also predicts the surrounding flame combustion behaviors of a single particle. Model simulations of the three shapes agree nearly within experimental uncertainty with the data. Investigations show that spherical mathematical approximations for fuels that either originate in or form aspherical shapes during combustion poorly represent combustion behavior when particle size exceeds a few hundred microns. This includes a large fraction of the particles in both biomass and black liquor combustion. In particular, composition and temperature gradients in particles strongly influence the predicted and measured rates of temperature rise and combustion, with large particles reacting more slowly than is predicted from isothermal models.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/ef800006z</identifier><identifier>CODEN: ENFUEM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biomass ; Combustion of solid fuels ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Natural energy ; Renewable Energy ; Theoretical studies. Data and constants. Metering</subject><ispartof>Energy &amp; fuels, 2008-07, Vol.22 (4), p.2826-2839</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3</citedby><cites>FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20519416$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Hong</creatorcontrib><creatorcontrib>Robert, Warren</creatorcontrib><creatorcontrib>Peirce, Gregory</creatorcontrib><creatorcontrib>Ripa, Bryan</creatorcontrib><creatorcontrib>Baxter, Larry L</creatorcontrib><title>Comprehensive Study of Biomass Particle Combustion</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the drying, rapid pyrolysis, gasification, and char oxidation processes of particles with different shapes. The model characterizes particles in three basic shapes (sphere, cylinder, and flat plate). With the particle geometric information (particle aspect ratio, volume, and surface area) included, this model can be modified to simulate the combustion process of biomass particles of any shape. The model also predicts the surrounding flame combustion behaviors of a single particle. Model simulations of the three shapes agree nearly within experimental uncertainty with the data. Investigations show that spherical mathematical approximations for fuels that either originate in or form aspherical shapes during combustion poorly represent combustion behavior when particle size exceeds a few hundred microns. This includes a large fraction of the particles in both biomass and black liquor combustion. In particular, composition and temperature gradients in particles strongly influence the predicted and measured rates of temperature rise and combustion, with large particles reacting more slowly than is predicted from isothermal models.</description><subject>Applied sciences</subject><subject>Biomass</subject><subject>Combustion of solid fuels</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Renewable Energy</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptj01Lw0AQhhdRsFYP_oNcPHiI7vfHUYNWoWCg1esy2exiapuU3VSsv96USr04lznM877Dg9AlwTcEU3Lrg8bDyO8jNCKC4lxgao7RCGutciwpP0VnKS12CNNihGjRrdbRv_s2NZ8-m_Wbept1IbtvuhWklJUQ-8YtfTZw1Sb1Tdeeo5MAy-QvfvcYvT4-zIunfPoyeS7upjkwqvrcmaA51RU4U0ktvWM1x5VjoETFKu4FAyMZN0HWOBghqOKaS2YMlwq49myMrve9LnYpRR_sOjYriFtLsN3J2oPswF7t2TUkB8sQoXVNOgQoFsRwIgcu33NN6v3X4Q7xw0rFlLDzcmbfyglnRUks-esFl-yi28R2MP7n_w9Og23h</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Lu, Hong</creator><creator>Robert, Warren</creator><creator>Peirce, Gregory</creator><creator>Ripa, Bryan</creator><creator>Baxter, Larry L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080701</creationdate><title>Comprehensive Study of Biomass Particle Combustion</title><author>Lu, Hong ; Robert, Warren ; Peirce, Gregory ; Ripa, Bryan ; Baxter, Larry L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Biomass</topic><topic>Combustion of solid fuels</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Renewable Energy</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hong</creatorcontrib><creatorcontrib>Robert, Warren</creatorcontrib><creatorcontrib>Peirce, Gregory</creatorcontrib><creatorcontrib>Ripa, Bryan</creatorcontrib><creatorcontrib>Baxter, Larry L</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hong</au><au>Robert, Warren</au><au>Peirce, Gregory</au><au>Ripa, Bryan</au><au>Baxter, Larry L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Study of Biomass Particle Combustion</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>22</volume><issue>4</issue><spage>2826</spage><epage>2839</epage><pages>2826-2839</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><coden>ENFUEM</coden><abstract>This investigation provides a comprehensive analysis of entrained-flow biomass particle combustion processes. A single-particle reactor provided drying, pyrolysis, and reaction rate data from poplar particle samples with sizes ranging from 3 to 15 mm. A one-dimensional particle model simulates the drying, rapid pyrolysis, gasification, and char oxidation processes of particles with different shapes. The model characterizes particles in three basic shapes (sphere, cylinder, and flat plate). With the particle geometric information (particle aspect ratio, volume, and surface area) included, this model can be modified to simulate the combustion process of biomass particles of any shape. The model also predicts the surrounding flame combustion behaviors of a single particle. Model simulations of the three shapes agree nearly within experimental uncertainty with the data. Investigations show that spherical mathematical approximations for fuels that either originate in or form aspherical shapes during combustion poorly represent combustion behavior when particle size exceeds a few hundred microns. This includes a large fraction of the particles in both biomass and black liquor combustion. In particular, composition and temperature gradients in particles strongly influence the predicted and measured rates of temperature rise and combustion, with large particles reacting more slowly than is predicted from isothermal models.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ef800006z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2008-07, Vol.22 (4), p.2826-2839
issn 0887-0624
1520-5029
language eng
recordid cdi_crossref_primary_10_1021_ef800006z
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Biomass
Combustion of solid fuels
Combustion. Flame
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Natural energy
Renewable Energy
Theoretical studies. Data and constants. Metering
title Comprehensive Study of Biomass Particle Combustion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Study%20of%20Biomass%20Particle%20Combustion&rft.jtitle=Energy%20&%20fuels&rft.au=Lu,%20Hong&rft.date=2008-07-01&rft.volume=22&rft.issue=4&rft.spage=2826&rft.epage=2839&rft.pages=2826-2839&rft.issn=0887-0624&rft.eissn=1520-5029&rft.coden=ENFUEM&rft_id=info:doi/10.1021/ef800006z&rft_dat=%3Cistex_cross%3Eark_67375_TPS_VPG43CP1_1%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a327t-c9f8428bac9b686ec3d40bc3a75b3b4e53a96349f6d0f955274846399467a48e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true