Loading…

Facile Synthesis of Graphene/Metal Nanoparticle Composites via Self-Catalysis Reduction at Room Temperature

Graphene/metal nanoparticle (NP) composites have attracted great interest for various applications as catalysts, electrodes, sensors, etc., due to their unique structures and extraordinary properties. A facile synthesis of graphene/metal NP composites with good control of size and morphology of meta...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2013-03, Vol.52 (6), p.3141-3147
Main Authors: Zhuo, Qiqi, Ma, Yanyun, Gao, Jing, Zhang, Pingping, Xia, Yujian, Tian, Yiming, Sun, Xiuxiao, Zhong, Jun, Sun, Xuhui
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphene/metal nanoparticle (NP) composites have attracted great interest for various applications as catalysts, electrodes, sensors, etc., due to their unique structures and extraordinary properties. A facile synthesis of graphene/metal NP composites with good control of size and morphology of metal NPs is critical to the practical applications. A simple method to synthesize graphene/metal NPs under a controllable manner via a self-catalysis reduction at room temperature has been developed in this paper. At first, metal NPs with desirable size and morphology were decorated on GO and then used as catalyst to accelerate the hydrolysis reaction of NaBH4 to reduce the graphene oxide. Compared to the existing methods, the method reported here features several advantages in which graphene/metal NPs are prepared without using toxic and explosive reductant, such as hydrazine or its derivatives, making it environmentally benign, and the reaction can be processed at room temperature with high efficiency and in a large range of pH values. The approach has been demonstrated to successfully synthesize graphene composites with various metal NPs in large quantity, which opens up a novel and simple way to prepare large-scale graphene/metal or graphene/metal oxide composites under mild conditions for practical applications. For example, graphene/AuNP composites synthesized by the method show excellent catalytic capability.
ISSN:0020-1669
1520-510X
DOI:10.1021/ic302608g