Loading…

Debye−Hückel Model for Calculating the Viscosity of Binary Strong Electrolyte Solutions at Different Temperatures

In the present article, a recently published model (Esteves, M. J. C.; Cardoso, M. J. E. de M.; Barcia, O. E. Ind. Eng. Chem. Res. 2001, 40, 5021) for calculating the viscosity of binary strong electrolyte solutions, at 25 °C and 0.1 MPa, has been extended for calculating the viscosity of binary str...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2002-10, Vol.41 (20), p.5109-5113
Main Authors: Esteves, Manoel J. C, Cardoso, Márcio J. E. de M, Barcia, Oswaldo E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a362t-5688010fb5d2b00b9125e4020a18571c17c68f3dac56b3d91e6ce7f9bf5867f83
cites cdi_FETCH-LOGICAL-a362t-5688010fb5d2b00b9125e4020a18571c17c68f3dac56b3d91e6ce7f9bf5867f83
container_end_page 5113
container_issue 20
container_start_page 5109
container_title Industrial & engineering chemistry research
container_volume 41
creator Esteves, Manoel J. C
Cardoso, Márcio J. E. de M
Barcia, Oswaldo E
description In the present article, a recently published model (Esteves, M. J. C.; Cardoso, M. J. E. de M.; Barcia, O. E. Ind. Eng. Chem. Res. 2001, 40, 5021) for calculating the viscosity of binary strong electrolyte solutions, at 25 °C and 0.1 MPa, has been extended for calculating the viscosity of binary strong electrolyte solutions at different temperatures. A temperature dependence has been introduced into the two adjustable parameters of the original model. The empirical expression originally proposed by Silvester and Pitzer (J. Phys. Chem. 1977, 81, 1822) to take into account the temperature dependence of thermodynamic properties of aqueous electrolyte solutions has been adopted. The proposed model contains a total of five adjustable parameters that have been fitted by means of experimental viscosity data in the literature. The total number of 20 binary electrolyte systems (at 0.1 MPa and in the temperature range of −35 to 55 °C) with two different solvents (water and methanol) have been studied. The overall average mean relative standard deviation is 0.98%
doi_str_mv 10.1021/ie020260k
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie020260k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_7W72HNBK_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-5688010fb5d2b00b9125e4020a18571c17c68f3dac56b3d91e6ce7f9bf5867f83</originalsourceid><addsrcrecordid>eNptULtOAzEQtBBIhEDBH7ihoDiw784-XwlJIIinlACl5XPWYHI5R7YjkT-g5nvo-BO-hENBpKHZXWlmZ3cGoX1KjihJ6bEFkpKUk-kG6lCWkoSRnG2iDhFCJEwIto12QnghhDCW5x0U-1At4evtffj5oadQ42s3aatxHvdUrRe1irZ5wvEZ8IMN2gUbl9gZfGob5Zd4FL1r4UENup3qZQQ8cvUiWtcErCLuW2PAQxPxGGZz8CouPIRdtGVUHWDvt3fR_dlg3BsmV7fnF72Tq0RlPI0J40IQSkzFJmlFSFXSlEHe-lNUsIJqWmguTDZRmvEqm5QUuIbClJVhghdGZF10uNLV3oXgwci5t7P2b0mJ_IlL_sXVcg9W3LkKWtXGq0bbsF7IyjxnJW95yYpnQ4TXP1z5qeRFVjA5vhvJ4rFIhzenl7K_1lU6yBe38E3r-J_73-6xiDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Debye−Hückel Model for Calculating the Viscosity of Binary Strong Electrolyte Solutions at Different Temperatures</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Esteves, Manoel J. C ; Cardoso, Márcio J. E. de M ; Barcia, Oswaldo E</creator><creatorcontrib>Esteves, Manoel J. C ; Cardoso, Márcio J. E. de M ; Barcia, Oswaldo E</creatorcontrib><description>In the present article, a recently published model (Esteves, M. J. C.; Cardoso, M. J. E. de M.; Barcia, O. E. Ind. Eng. Chem. Res. 2001, 40, 5021) for calculating the viscosity of binary strong electrolyte solutions, at 25 °C and 0.1 MPa, has been extended for calculating the viscosity of binary strong electrolyte solutions at different temperatures. A temperature dependence has been introduced into the two adjustable parameters of the original model. The empirical expression originally proposed by Silvester and Pitzer (J. Phys. Chem. 1977, 81, 1822) to take into account the temperature dependence of thermodynamic properties of aqueous electrolyte solutions has been adopted. The proposed model contains a total of five adjustable parameters that have been fitted by means of experimental viscosity data in the literature. The total number of 20 binary electrolyte systems (at 0.1 MPa and in the temperature range of −35 to 55 °C) with two different solvents (water and methanol) have been studied. The overall average mean relative standard deviation is 0.98%</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie020260k</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Solution properties ; Solutions</subject><ispartof>Industrial &amp; engineering chemistry research, 2002-10, Vol.41 (20), p.5109-5113</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-5688010fb5d2b00b9125e4020a18571c17c68f3dac56b3d91e6ce7f9bf5867f83</citedby><cites>FETCH-LOGICAL-a362t-5688010fb5d2b00b9125e4020a18571c17c68f3dac56b3d91e6ce7f9bf5867f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13944596$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Esteves, Manoel J. C</creatorcontrib><creatorcontrib>Cardoso, Márcio J. E. de M</creatorcontrib><creatorcontrib>Barcia, Oswaldo E</creatorcontrib><title>Debye−Hückel Model for Calculating the Viscosity of Binary Strong Electrolyte Solutions at Different Temperatures</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>In the present article, a recently published model (Esteves, M. J. C.; Cardoso, M. J. E. de M.; Barcia, O. E. Ind. Eng. Chem. Res. 2001, 40, 5021) for calculating the viscosity of binary strong electrolyte solutions, at 25 °C and 0.1 MPa, has been extended for calculating the viscosity of binary strong electrolyte solutions at different temperatures. A temperature dependence has been introduced into the two adjustable parameters of the original model. The empirical expression originally proposed by Silvester and Pitzer (J. Phys. Chem. 1977, 81, 1822) to take into account the temperature dependence of thermodynamic properties of aqueous electrolyte solutions has been adopted. The proposed model contains a total of five adjustable parameters that have been fitted by means of experimental viscosity data in the literature. The total number of 20 binary electrolyte systems (at 0.1 MPa and in the temperature range of −35 to 55 °C) with two different solvents (water and methanol) have been studied. The overall average mean relative standard deviation is 0.98%</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Solution properties</subject><subject>Solutions</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptULtOAzEQtBBIhEDBH7ihoDiw784-XwlJIIinlACl5XPWYHI5R7YjkT-g5nvo-BO-hENBpKHZXWlmZ3cGoX1KjihJ6bEFkpKUk-kG6lCWkoSRnG2iDhFCJEwIto12QnghhDCW5x0U-1At4evtffj5oadQ42s3aatxHvdUrRe1irZ5wvEZ8IMN2gUbl9gZfGob5Zd4FL1r4UENup3qZQQ8cvUiWtcErCLuW2PAQxPxGGZz8CouPIRdtGVUHWDvt3fR_dlg3BsmV7fnF72Tq0RlPI0J40IQSkzFJmlFSFXSlEHe-lNUsIJqWmguTDZRmvEqm5QUuIbClJVhghdGZF10uNLV3oXgwci5t7P2b0mJ_IlL_sXVcg9W3LkKWtXGq0bbsF7IyjxnJW95yYpnQ4TXP1z5qeRFVjA5vhvJ4rFIhzenl7K_1lU6yBe38E3r-J_73-6xiDc</recordid><startdate>20021002</startdate><enddate>20021002</enddate><creator>Esteves, Manoel J. C</creator><creator>Cardoso, Márcio J. E. de M</creator><creator>Barcia, Oswaldo E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20021002</creationdate><title>Debye−Hückel Model for Calculating the Viscosity of Binary Strong Electrolyte Solutions at Different Temperatures</title><author>Esteves, Manoel J. C ; Cardoso, Márcio J. E. de M ; Barcia, Oswaldo E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-5688010fb5d2b00b9125e4020a18571c17c68f3dac56b3d91e6ce7f9bf5867f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Solution properties</topic><topic>Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esteves, Manoel J. C</creatorcontrib><creatorcontrib>Cardoso, Márcio J. E. de M</creatorcontrib><creatorcontrib>Barcia, Oswaldo E</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteves, Manoel J. C</au><au>Cardoso, Márcio J. E. de M</au><au>Barcia, Oswaldo E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Debye−Hückel Model for Calculating the Viscosity of Binary Strong Electrolyte Solutions at Different Temperatures</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2002-10-02</date><risdate>2002</risdate><volume>41</volume><issue>20</issue><spage>5109</spage><epage>5113</epage><pages>5109-5113</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>In the present article, a recently published model (Esteves, M. J. C.; Cardoso, M. J. E. de M.; Barcia, O. E. Ind. Eng. Chem. Res. 2001, 40, 5021) for calculating the viscosity of binary strong electrolyte solutions, at 25 °C and 0.1 MPa, has been extended for calculating the viscosity of binary strong electrolyte solutions at different temperatures. A temperature dependence has been introduced into the two adjustable parameters of the original model. The empirical expression originally proposed by Silvester and Pitzer (J. Phys. Chem. 1977, 81, 1822) to take into account the temperature dependence of thermodynamic properties of aqueous electrolyte solutions has been adopted. The proposed model contains a total of five adjustable parameters that have been fitted by means of experimental viscosity data in the literature. The total number of 20 binary electrolyte systems (at 0.1 MPa and in the temperature range of −35 to 55 °C) with two different solvents (water and methanol) have been studied. The overall average mean relative standard deviation is 0.98%</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie020260k</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2002-10, Vol.41 (20), p.5109-5113
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie020260k
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Solution properties
Solutions
title Debye−Hückel Model for Calculating the Viscosity of Binary Strong Electrolyte Solutions at Different Temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Debye%E2%88%92H%C3%BCckel%20Model%20for%20Calculating%20the%20Viscosity%20of%20Binary%20Strong%20Electrolyte%20Solutions%20at%20Different%20Temperatures&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Esteves,%20Manoel%20J.%20C&rft.date=2002-10-02&rft.volume=41&rft.issue=20&rft.spage=5109&rft.epage=5113&rft.pages=5109-5113&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie020260k&rft_dat=%3Cistex_cross%3Eark_67375_TPS_7W72HNBK_D%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a362t-5688010fb5d2b00b9125e4020a18571c17c68f3dac56b3d91e6ce7f9bf5867f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true