Loading…
Iterative Learning Control for Final Batch Product Quality Using Partial Least Squares Models
A terminal iterative learning control (ILC) strategy for batch-to-batch and within-batch control of final product properties, based on empirical partial least squares (PLS) models, is presented. The strategy rejects persistent process disturbances and achieves new final product quality targets using...
Saved in:
Published in: | Industrial & engineering chemistry research 2005-11, Vol.44 (24), p.9146-9155 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A terminal iterative learning control (ILC) strategy for batch-to-batch and within-batch control of final product properties, based on empirical partial least squares (PLS) models, is presented. The strategy rejects persistent process disturbances and achieves new final product quality targets using an iterative procedure that works in the reduced space of a latent variable model rather than in the high dimensional space of the manipulated variable trajectories. Complete manipulated variable trajectory reconstruction is then achieved by exploiting the PLS model of the process. The approach is illustrated with a condensation polymerization example for the production of nylon. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie048811p |