Loading…
Feasible Design Space for Shell-and-Tube Heat Exchangers Using the Bell−Delaware Method
This paper presents an improved methodology for generating feasible regions for shell-and-tube exchanger design, taking into account geometric and operational constraints. The approach is based on the Bell−Delaware method to describe the shell-side flow with no simplification; this approach, therefo...
Saved in:
Published in: | Industrial & engineering chemistry research 2007-01, Vol.46 (1), p.143-155 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a364t-8cb90df7e0ae65a20f9b749e6592a5406c9e21530aa658585e392acb5c949723 |
---|---|
cites | cdi_FETCH-LOGICAL-a364t-8cb90df7e0ae65a20f9b749e6592a5406c9e21530aa658585e392acb5c949723 |
container_end_page | 155 |
container_issue | 1 |
container_start_page | 143 |
container_title | Industrial & engineering chemistry research |
container_volume | 46 |
creator | Serna-González, Medardo Ponce-Ortega, José M Castro-Montoya, Agustín J Jiménez-Gutiérrez, Arturo |
description | This paper presents an improved methodology for generating feasible regions for shell-and-tube exchanger design, taking into account geometric and operational constraints. The approach is based on the Bell−Delaware method to describe the shell-side flow with no simplification; this approach, therefore, can incorporate the entire range of geometric parameters of practical interest. Compact analytical equations are derived from the rigorous Bell−Delaware method for the shell-side heat transfer coefficient and pressure drop. These equations aid significantly in the solution of the design problem. The solution involves a nested approach where the compact equation parameters are treated as iteration variables; a simplified heat exchanger model is solved in an inner loop, and the exchanger parameters are updated in an outer loop. Compared to a previous work, which uses the approximate Kern method to describe the shell-side flow, the present one provides a better accuracy for the thermal design of shell-and-tube heat exchangers with single-phase fluids. One example is presented to show the application of the proposed method. The alternative use of proprietary design software is also illustrated. |
doi_str_mv | 10.1021/ie051371x |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie051371x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_L1913R7F_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-8cb90df7e0ae65a20f9b749e6592a5406c9e21530aa658585e392acb5c949723</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EEqWw4AbesGBhsJM4dpbQH4pUBKJBgpU1cSdNSkgrOxXlBqw5IichqKjdoFnMSO-bN5pHyKngF4IH4rJELkWoxHqPdIQMOJM8kvukw7XWTGotD8mR93POuZRR1CEvQwRfZhXSPvpyVtPJEizSfOHopMCqYlBPWbrKkI4QGjpY2wLqGTpPn3xZz2hTIL1uue_Prz5W8A4O6R02xWJ6TA5yqDye_PUuSYeDtDdi4_ub297VmEEYRw3TNkv4NFfIAWMJAc-TTEVJOycByIjHNsFAyJADxFK3hWEr2EzaJEpUEHbJ-cbWuoX3DnOzdOUbuA8juPmNxGwjadmzDbsEb6HKHdS29LsFHXGtpG45tuFK3-B6q4N7NbEKlTTpw8SMRSLCRzU0zztfsN7MFytXtw__c_8HUNl7nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Feasible Design Space for Shell-and-Tube Heat Exchangers Using the Bell−Delaware Method</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Serna-González, Medardo ; Ponce-Ortega, José M ; Castro-Montoya, Agustín J ; Jiménez-Gutiérrez, Arturo</creator><creatorcontrib>Serna-González, Medardo ; Ponce-Ortega, José M ; Castro-Montoya, Agustín J ; Jiménez-Gutiérrez, Arturo</creatorcontrib><description>This paper presents an improved methodology for generating feasible regions for shell-and-tube exchanger design, taking into account geometric and operational constraints. The approach is based on the Bell−Delaware method to describe the shell-side flow with no simplification; this approach, therefore, can incorporate the entire range of geometric parameters of practical interest. Compact analytical equations are derived from the rigorous Bell−Delaware method for the shell-side heat transfer coefficient and pressure drop. These equations aid significantly in the solution of the design problem. The solution involves a nested approach where the compact equation parameters are treated as iteration variables; a simplified heat exchanger model is solved in an inner loop, and the exchanger parameters are updated in an outer loop. Compared to a previous work, which uses the approximate Kern method to describe the shell-side flow, the present one provides a better accuracy for the thermal design of shell-and-tube heat exchangers with single-phase fluids. One example is presented to show the application of the proposed method. The alternative use of proprietary design software is also illustrated.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie051371x</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Heat exchangers and evaporators</subject><ispartof>Industrial & engineering chemistry research, 2007-01, Vol.46 (1), p.143-155</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-8cb90df7e0ae65a20f9b749e6592a5406c9e21530aa658585e392acb5c949723</citedby><cites>FETCH-LOGICAL-a364t-8cb90df7e0ae65a20f9b749e6592a5406c9e21530aa658585e392acb5c949723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18408758$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Serna-González, Medardo</creatorcontrib><creatorcontrib>Ponce-Ortega, José M</creatorcontrib><creatorcontrib>Castro-Montoya, Agustín J</creatorcontrib><creatorcontrib>Jiménez-Gutiérrez, Arturo</creatorcontrib><title>Feasible Design Space for Shell-and-Tube Heat Exchangers Using the Bell−Delaware Method</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This paper presents an improved methodology for generating feasible regions for shell-and-tube exchanger design, taking into account geometric and operational constraints. The approach is based on the Bell−Delaware method to describe the shell-side flow with no simplification; this approach, therefore, can incorporate the entire range of geometric parameters of practical interest. Compact analytical equations are derived from the rigorous Bell−Delaware method for the shell-side heat transfer coefficient and pressure drop. These equations aid significantly in the solution of the design problem. The solution involves a nested approach where the compact equation parameters are treated as iteration variables; a simplified heat exchanger model is solved in an inner loop, and the exchanger parameters are updated in an outer loop. Compared to a previous work, which uses the approximate Kern method to describe the shell-side flow, the present one provides a better accuracy for the thermal design of shell-and-tube heat exchangers with single-phase fluids. One example is presented to show the application of the proposed method. The alternative use of proprietary design software is also illustrated.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Heat exchangers and evaporators</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0EEqWw4AbesGBhsJM4dpbQH4pUBKJBgpU1cSdNSkgrOxXlBqw5IichqKjdoFnMSO-bN5pHyKngF4IH4rJELkWoxHqPdIQMOJM8kvukw7XWTGotD8mR93POuZRR1CEvQwRfZhXSPvpyVtPJEizSfOHopMCqYlBPWbrKkI4QGjpY2wLqGTpPn3xZz2hTIL1uue_Prz5W8A4O6R02xWJ6TA5yqDye_PUuSYeDtDdi4_ub297VmEEYRw3TNkv4NFfIAWMJAc-TTEVJOycByIjHNsFAyJADxFK3hWEr2EzaJEpUEHbJ-cbWuoX3DnOzdOUbuA8juPmNxGwjadmzDbsEb6HKHdS29LsFHXGtpG45tuFK3-B6q4N7NbEKlTTpw8SMRSLCRzU0zztfsN7MFytXtw__c_8HUNl7nA</recordid><startdate>20070103</startdate><enddate>20070103</enddate><creator>Serna-González, Medardo</creator><creator>Ponce-Ortega, José M</creator><creator>Castro-Montoya, Agustín J</creator><creator>Jiménez-Gutiérrez, Arturo</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070103</creationdate><title>Feasible Design Space for Shell-and-Tube Heat Exchangers Using the Bell−Delaware Method</title><author>Serna-González, Medardo ; Ponce-Ortega, José M ; Castro-Montoya, Agustín J ; Jiménez-Gutiérrez, Arturo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-8cb90df7e0ae65a20f9b749e6592a5406c9e21530aa658585e392acb5c949723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Heat exchangers and evaporators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serna-González, Medardo</creatorcontrib><creatorcontrib>Ponce-Ortega, José M</creatorcontrib><creatorcontrib>Castro-Montoya, Agustín J</creatorcontrib><creatorcontrib>Jiménez-Gutiérrez, Arturo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serna-González, Medardo</au><au>Ponce-Ortega, José M</au><au>Castro-Montoya, Agustín J</au><au>Jiménez-Gutiérrez, Arturo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasible Design Space for Shell-and-Tube Heat Exchangers Using the Bell−Delaware Method</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2007-01-03</date><risdate>2007</risdate><volume>46</volume><issue>1</issue><spage>143</spage><epage>155</epage><pages>143-155</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>This paper presents an improved methodology for generating feasible regions for shell-and-tube exchanger design, taking into account geometric and operational constraints. The approach is based on the Bell−Delaware method to describe the shell-side flow with no simplification; this approach, therefore, can incorporate the entire range of geometric parameters of practical interest. Compact analytical equations are derived from the rigorous Bell−Delaware method for the shell-side heat transfer coefficient and pressure drop. These equations aid significantly in the solution of the design problem. The solution involves a nested approach where the compact equation parameters are treated as iteration variables; a simplified heat exchanger model is solved in an inner loop, and the exchanger parameters are updated in an outer loop. Compared to a previous work, which uses the approximate Kern method to describe the shell-side flow, the present one provides a better accuracy for the thermal design of shell-and-tube heat exchangers with single-phase fluids. One example is presented to show the application of the proposed method. The alternative use of proprietary design software is also illustrated.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie051371x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2007-01, Vol.46 (1), p.143-155 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie051371x |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Chemical engineering Exact sciences and technology Heat exchangers and evaporators |
title | Feasible Design Space for Shell-and-Tube Heat Exchangers Using the Bell−Delaware Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasible%20Design%20Space%20for%20Shell-and-Tube%20Heat%20Exchangers%20Using%20the%20Bell%E2%88%92Delaware%20Method&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Serna-Gonz%C3%A1lez,%20Medardo&rft.date=2007-01-03&rft.volume=46&rft.issue=1&rft.spage=143&rft.epage=155&rft.pages=143-155&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie051371x&rft_dat=%3Cistex_cross%3Eark_67375_TPS_L1913R7F_X%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-8cb90df7e0ae65a20f9b749e6592a5406c9e21530aa658585e392acb5c949723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |