Loading…
Micronization of p-Aminosalicylic Acid Particles Using High-Gravity Technique
An antisolvent precipitation process was adopted in this study to prepare micrometer-sized p-aminosalicylic acid (PAS) particles using the high-gravity technique. The effects of operating variables on the particle size were investigated. With an increase in the dispersant concentration and disk diam...
Saved in:
Published in: | Industrial & engineering chemistry research 2010-09, Vol.49 (18), p.8832-8840 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An antisolvent precipitation process was adopted in this study to prepare micrometer-sized p-aminosalicylic acid (PAS) particles using the high-gravity technique. The effects of operating variables on the particle size were investigated. With an increase in the dispersant concentration and disk diameter or a decrease in the drug (PAS) concentration, the particle size of PAS was reduced. In addition, a circular-tube distributor was more effective than a straight-tube distributor for micronization. On the other hand, the effect of the liquid flow rate in the range between 0.25 and 1 L/min was less significant. The high-pressure homogenization following the high-gravity precipitation would effectively reduce the agglomeration of the particles in the suspension to produce drug particles with a mean size of 1 μm. The enhancement of the dissolution rate was significant for the micronized drug particles. The results indicate that the high-gravity process is a promising approach for micronizing drug particles. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie1007932 |