Loading…
Bayesian Framework for Building Kinetic Models of Catalytic Systems
Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bay...
Saved in:
Published in: | Industrial & engineering chemistry research 2009-05, Vol.48 (10), p.4768-4790 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3 |
container_end_page | 4790 |
container_issue | 10 |
container_start_page | 4768 |
container_title | Industrial & engineering chemistry research |
container_volume | 48 |
creator | Hsu, Shuo-Huan Stamatis, Stephen D Caruthers, James M Delgass, W. Nicholas Venkatasubramanian, Venkat Blau, Gary E Lasinski, Mike Orcun, Seza |
description | Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features. |
doi_str_mv | 10.1021/ie801651y |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie801651y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b538232009</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3</originalsourceid><addsrcrecordid>eNptj01Lw0AQhhdRsFYP_oO9ePAQ3e_sHm2wKlY82HuY7odsTZOymyL5902p9CTMMPDyzAsPQreUPFDC6GP0mlAl6XCGJlQyUkgi5DmaEK11IbWWl-gq5zUhREohJqiaweBzhBbPE2z8b5d-cOgSnu1i42L7jd9j6_to8UfnfJNxF3AFPTTDIfsacu83-RpdBGiyv_m7U7ScPy-r12Lx-fJWPS0KYNr0hV9xZoRS5QoYL53xlAplDaxEEGXwIBRVojRGBOVKRi2HcYlxXBDmuONTdH-stanLOflQb1PcQBpqSuqDfH2SH9m7I7uFbKEJCVob8-mBUWEoH-fEgc31utuldhT4p28P7PhkqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Framework for Building Kinetic Models of Catalytic Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hsu, Shuo-Huan ; Stamatis, Stephen D ; Caruthers, James M ; Delgass, W. Nicholas ; Venkatasubramanian, Venkat ; Blau, Gary E ; Lasinski, Mike ; Orcun, Seza</creator><creatorcontrib>Hsu, Shuo-Huan ; Stamatis, Stephen D ; Caruthers, James M ; Delgass, W. Nicholas ; Venkatasubramanian, Venkat ; Blau, Gary E ; Lasinski, Mike ; Orcun, Seza</creatorcontrib><description>Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie801651y</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Catalysis ; Catalytic reactions ; Chemical engineering ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Kinetics, Catalysis, and Reaction Engineering ; Reactors ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Industrial & engineering chemistry research, 2009-05, Vol.48 (10), p.4768-4790</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3</citedby><cites>FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21491391$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Shuo-Huan</creatorcontrib><creatorcontrib>Stamatis, Stephen D</creatorcontrib><creatorcontrib>Caruthers, James M</creatorcontrib><creatorcontrib>Delgass, W. Nicholas</creatorcontrib><creatorcontrib>Venkatasubramanian, Venkat</creatorcontrib><creatorcontrib>Blau, Gary E</creatorcontrib><creatorcontrib>Lasinski, Mike</creatorcontrib><creatorcontrib>Orcun, Seza</creatorcontrib><title>Bayesian Framework for Building Kinetic Models of Catalytic Systems</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features.</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics, Catalysis, and Reaction Engineering</subject><subject>Reactors</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptj01Lw0AQhhdRsFYP_oO9ePAQ3e_sHm2wKlY82HuY7odsTZOymyL5902p9CTMMPDyzAsPQreUPFDC6GP0mlAl6XCGJlQyUkgi5DmaEK11IbWWl-gq5zUhREohJqiaweBzhBbPE2z8b5d-cOgSnu1i42L7jd9j6_to8UfnfJNxF3AFPTTDIfsacu83-RpdBGiyv_m7U7ScPy-r12Lx-fJWPS0KYNr0hV9xZoRS5QoYL53xlAplDaxEEGXwIBRVojRGBOVKRi2HcYlxXBDmuONTdH-stanLOflQb1PcQBpqSuqDfH2SH9m7I7uFbKEJCVob8-mBUWEoH-fEgc31utuldhT4p28P7PhkqA</recordid><startdate>20090520</startdate><enddate>20090520</enddate><creator>Hsu, Shuo-Huan</creator><creator>Stamatis, Stephen D</creator><creator>Caruthers, James M</creator><creator>Delgass, W. Nicholas</creator><creator>Venkatasubramanian, Venkat</creator><creator>Blau, Gary E</creator><creator>Lasinski, Mike</creator><creator>Orcun, Seza</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090520</creationdate><title>Bayesian Framework for Building Kinetic Models of Catalytic Systems</title><author>Hsu, Shuo-Huan ; Stamatis, Stephen D ; Caruthers, James M ; Delgass, W. Nicholas ; Venkatasubramanian, Venkat ; Blau, Gary E ; Lasinski, Mike ; Orcun, Seza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics, Catalysis, and Reaction Engineering</topic><topic>Reactors</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Shuo-Huan</creatorcontrib><creatorcontrib>Stamatis, Stephen D</creatorcontrib><creatorcontrib>Caruthers, James M</creatorcontrib><creatorcontrib>Delgass, W. Nicholas</creatorcontrib><creatorcontrib>Venkatasubramanian, Venkat</creatorcontrib><creatorcontrib>Blau, Gary E</creatorcontrib><creatorcontrib>Lasinski, Mike</creatorcontrib><creatorcontrib>Orcun, Seza</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Shuo-Huan</au><au>Stamatis, Stephen D</au><au>Caruthers, James M</au><au>Delgass, W. Nicholas</au><au>Venkatasubramanian, Venkat</au><au>Blau, Gary E</au><au>Lasinski, Mike</au><au>Orcun, Seza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Framework for Building Kinetic Models of Catalytic Systems</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2009-05-20</date><risdate>2009</risdate><volume>48</volume><issue>10</issue><spage>4768</spage><epage>4790</epage><pages>4768-4790</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie801651y</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2009-05, Vol.48 (10), p.4768-4790 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ie801651y |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Catalysis Catalytic reactions Chemical engineering Chemistry Exact sciences and technology General and physical chemistry Kinetics, Catalysis, and Reaction Engineering Reactors Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Bayesian Framework for Building Kinetic Models of Catalytic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Framework%20for%20Building%20Kinetic%20Models%20of%20Catalytic%20Systems&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Hsu,%20Shuo-Huan&rft.date=2009-05-20&rft.volume=48&rft.issue=10&rft.spage=4768&rft.epage=4790&rft.pages=4768-4790&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie801651y&rft_dat=%3Cacs_cross%3Eb538232009%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |