Loading…

Bayesian Framework for Building Kinetic Models of Catalytic Systems

Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bay...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2009-05, Vol.48 (10), p.4768-4790
Main Authors: Hsu, Shuo-Huan, Stamatis, Stephen D, Caruthers, James M, Delgass, W. Nicholas, Venkatasubramanian, Venkat, Blau, Gary E, Lasinski, Mike, Orcun, Seza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3
cites cdi_FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3
container_end_page 4790
container_issue 10
container_start_page 4768
container_title Industrial & engineering chemistry research
container_volume 48
creator Hsu, Shuo-Huan
Stamatis, Stephen D
Caruthers, James M
Delgass, W. Nicholas
Venkatasubramanian, Venkat
Blau, Gary E
Lasinski, Mike
Orcun, Seza
description Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features.
doi_str_mv 10.1021/ie801651y
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ie801651y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b538232009</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3</originalsourceid><addsrcrecordid>eNptj01Lw0AQhhdRsFYP_oO9ePAQ3e_sHm2wKlY82HuY7odsTZOymyL5902p9CTMMPDyzAsPQreUPFDC6GP0mlAl6XCGJlQyUkgi5DmaEK11IbWWl-gq5zUhREohJqiaweBzhBbPE2z8b5d-cOgSnu1i42L7jd9j6_to8UfnfJNxF3AFPTTDIfsacu83-RpdBGiyv_m7U7ScPy-r12Lx-fJWPS0KYNr0hV9xZoRS5QoYL53xlAplDaxEEGXwIBRVojRGBOVKRi2HcYlxXBDmuONTdH-stanLOflQb1PcQBpqSuqDfH2SH9m7I7uFbKEJCVob8-mBUWEoH-fEgc31utuldhT4p28P7PhkqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Framework for Building Kinetic Models of Catalytic Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hsu, Shuo-Huan ; Stamatis, Stephen D ; Caruthers, James M ; Delgass, W. Nicholas ; Venkatasubramanian, Venkat ; Blau, Gary E ; Lasinski, Mike ; Orcun, Seza</creator><creatorcontrib>Hsu, Shuo-Huan ; Stamatis, Stephen D ; Caruthers, James M ; Delgass, W. Nicholas ; Venkatasubramanian, Venkat ; Blau, Gary E ; Lasinski, Mike ; Orcun, Seza</creatorcontrib><description>Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie801651y</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Catalysis ; Catalytic reactions ; Chemical engineering ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Kinetics, Catalysis, and Reaction Engineering ; Reactors ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Industrial &amp; engineering chemistry research, 2009-05, Vol.48 (10), p.4768-4790</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3</citedby><cites>FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21491391$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Shuo-Huan</creatorcontrib><creatorcontrib>Stamatis, Stephen D</creatorcontrib><creatorcontrib>Caruthers, James M</creatorcontrib><creatorcontrib>Delgass, W. Nicholas</creatorcontrib><creatorcontrib>Venkatasubramanian, Venkat</creatorcontrib><creatorcontrib>Blau, Gary E</creatorcontrib><creatorcontrib>Lasinski, Mike</creatorcontrib><creatorcontrib>Orcun, Seza</creatorcontrib><title>Bayesian Framework for Building Kinetic Models of Catalytic Systems</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features.</description><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics, Catalysis, and Reaction Engineering</subject><subject>Reactors</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptj01Lw0AQhhdRsFYP_oO9ePAQ3e_sHm2wKlY82HuY7odsTZOymyL5902p9CTMMPDyzAsPQreUPFDC6GP0mlAl6XCGJlQyUkgi5DmaEK11IbWWl-gq5zUhREohJqiaweBzhBbPE2z8b5d-cOgSnu1i42L7jd9j6_to8UfnfJNxF3AFPTTDIfsacu83-RpdBGiyv_m7U7ScPy-r12Lx-fJWPS0KYNr0hV9xZoRS5QoYL53xlAplDaxEEGXwIBRVojRGBOVKRi2HcYlxXBDmuONTdH-stanLOflQb1PcQBpqSuqDfH2SH9m7I7uFbKEJCVob8-mBUWEoH-fEgc31utuldhT4p28P7PhkqA</recordid><startdate>20090520</startdate><enddate>20090520</enddate><creator>Hsu, Shuo-Huan</creator><creator>Stamatis, Stephen D</creator><creator>Caruthers, James M</creator><creator>Delgass, W. Nicholas</creator><creator>Venkatasubramanian, Venkat</creator><creator>Blau, Gary E</creator><creator>Lasinski, Mike</creator><creator>Orcun, Seza</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090520</creationdate><title>Bayesian Framework for Building Kinetic Models of Catalytic Systems</title><author>Hsu, Shuo-Huan ; Stamatis, Stephen D ; Caruthers, James M ; Delgass, W. Nicholas ; Venkatasubramanian, Venkat ; Blau, Gary E ; Lasinski, Mike ; Orcun, Seza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics, Catalysis, and Reaction Engineering</topic><topic>Reactors</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Shuo-Huan</creatorcontrib><creatorcontrib>Stamatis, Stephen D</creatorcontrib><creatorcontrib>Caruthers, James M</creatorcontrib><creatorcontrib>Delgass, W. Nicholas</creatorcontrib><creatorcontrib>Venkatasubramanian, Venkat</creatorcontrib><creatorcontrib>Blau, Gary E</creatorcontrib><creatorcontrib>Lasinski, Mike</creatorcontrib><creatorcontrib>Orcun, Seza</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Shuo-Huan</au><au>Stamatis, Stephen D</au><au>Caruthers, James M</au><au>Delgass, W. Nicholas</au><au>Venkatasubramanian, Venkat</au><au>Blau, Gary E</au><au>Lasinski, Mike</au><au>Orcun, Seza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Framework for Building Kinetic Models of Catalytic Systems</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2009-05-20</date><risdate>2009</risdate><volume>48</volume><issue>10</issue><spage>4768</spage><epage>4790</epage><pages>4768-4790</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie801651y</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2009-05, Vol.48 (10), p.4768-4790
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_ie801651y
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Catalysis
Catalytic reactions
Chemical engineering
Chemistry
Exact sciences and technology
General and physical chemistry
Kinetics, Catalysis, and Reaction Engineering
Reactors
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Bayesian Framework for Building Kinetic Models of Catalytic Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Framework%20for%20Building%20Kinetic%20Models%20of%20Catalytic%20Systems&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Hsu,%20Shuo-Huan&rft.date=2009-05-20&rft.volume=48&rft.issue=10&rft.spage=4768&rft.epage=4790&rft.pages=4768-4790&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie801651y&rft_dat=%3Cacs_cross%3Eb538232009%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-eb3294667ba237d9e1146c9ab4f47fea461647994f6d721c3a1c309d3402d3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true