Loading…
Optimal Experimental Design for Discriminating Numerous Model Candidates: The AWDC Criterion
While model-based optimal experimental design (OED) strategies aiming at maximizing the parameter precision are regularly applied in industry and academia, only a little attention has been payed to OED techniques for model discrimination in practical applications. A broader use of these techniques i...
Saved in:
Published in: | Industrial & engineering chemistry research 2010-01, Vol.49 (2), p.913-919 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While model-based optimal experimental design (OED) strategies aiming at maximizing the parameter precision are regularly applied in industry and academia, only a little attention has been payed to OED techniques for model discrimination in practical applications. A broader use of these techniques is mainly hindered by two drawbacks: (i) The use of such techniques is desirable in an early model identification phase, where only a little knowledge on the process is available. The known methods, however, rely on good estimates of the parameters of all candidate model structures. (ii) The available methods are tailored to few (ideally two) model candidates and do not work well if numerous candidate structures are taken into account. In this work we propose a novel design criterion for model-based OED for model discrimination in the case of multiple model candidates. The resulting OED method is thus well-suited for designing experiments in an early stage of the model identification process to efficiently reduce the number of model candidates, thereby reducing the overall cost for model identification. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie900903u |