Loading…
C 2-Symmetric Bis(oxazolinato)lanthanide Catalysts for Enantioselective Intramolecular Hydroamination/Cyclization
C 2-symmetric bis(oxazolinato)lanthanide complexes of the type [(4R,5S)-Ph2Box]La[N(TMS)2]2, [(4S,5R)-Ar2Box]La[N(TMS)2]2, and [(4S)-Ph-5,5-Me2Box]La[N(TMS)2]2 (Box = 2,2‘-bis(2-oxazoline)methylenyl; Ar = 4-tert-butylphenyl, 1-naphthyl; TMS = SiMe3) serve as precatalysts for the efficient enantiosel...
Saved in:
Published in: | Journal of the American Chemical Society 2003-12, Vol.125 (48), p.14768-14783 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | C 2-symmetric bis(oxazolinato)lanthanide complexes of the type [(4R,5S)-Ph2Box]La[N(TMS)2]2, [(4S,5R)-Ar2Box]La[N(TMS)2]2, and [(4S)-Ph-5,5-Me2Box]La[N(TMS)2]2 (Box = 2,2‘-bis(2-oxazoline)methylenyl; Ar = 4-tert-butylphenyl, 1-naphthyl; TMS = SiMe3) serve as precatalysts for the efficient enantioselective intramolecular hydroamination/cyclization of aminoalkenes and aminodienes. These new catalyst systems are conveniently generated in situ from the known metal precursors Ln[N(TMS)2]3 or Ln[CH(TMS)2]3 (Ln = La, Nd, Sm, Y, Lu) and 1.2 equiv of commercially available or readily prepared bis(oxazoline) ligands such as (4R,5S)-Ph2BoxH, (4S,5R)-Ar2BoxH, and (4S)-Ph-5,5-Me2BoxH. The X-ray crystal structure of [(4S)- t BuBox]Lu[CH(TMS)2]2 provides insight into the structure of the in situ generated precatalyst species. Lanthanides having the largest ionic radii exhibit the highest turnover frequencies as well as enantioselectivities. Reaction rates maximize near 1:1 BoxH:Ln ratio (ligand acceleration); however, increasing the ratio to 2:1 BoxH:Ln decreases the reaction rate, while affording enantiomeric excesses similar to the 1:1 BoxH:Ln case. A screening study of bis(oxazoline) ligands reveals that aryl stereodirecting groups at the oxazoline ring 4 position and additional substitution (geminal dimethyl or aryl) at the 5 position are crucial for high turnover frequencies and good enantioselectivities. The optimized precatalyst, in situ generated [(4R,5S)-Ph2Box]La[N(TMS)2]2, exhibits good rates and enantioselectivities, comparable to or greater than those achieved with chiral C 1-symmetric organolanthanocene catalysts, even for poorly responsive substrates (up to 67% ee at 23 °C). Kinetic studies reveal that hydroamination rates are zero order in [amine substrate] and first order in [catalyst], implicating the same general mechanism for organolanthanide-catalyzed hydroamination/cyclizations (intramolecular turnover-limiting olefin insertion followed by the rapid protonolysis of an Ln−C bond by amine substrate) and implying that the active catalytic species is monomeric. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0364672 |