Loading…

Oxidative Rearrangement Processes in the Biosynthesis of Gilvocarcin V

Gilvocarcin V (GV), an antitumor agent produced by Streptomyces griseoflavus Gö 3592 and various other streptomycetes, is the most important representative of the distinct family of benzo[d]naphtho[1,2-b]pyran-6-one aryl C-glycoside antibiotics, which show excellent antitumor activity and a remarkab...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2004-10, Vol.126 (39), p.12262-12263
Main Authors: Liu, Tao, Fischer, Carsten, Beninga, Claus, Rohr, Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gilvocarcin V (GV), an antitumor agent produced by Streptomyces griseoflavus Gö 3592 and various other streptomycetes, is the most important representative of the distinct family of benzo[d]naphtho[1,2-b]pyran-6-one aryl C-glycoside antibiotics, which show excellent antitumor activity and a remarkably low toxicity. The most intriguing step of its biosynthesis is an oxidative rearrangement cascade, in which the C-5/C-6 of an angucyclinone precursor bond is broken. Although this oxidative cleavage is essential for the formation of GV's unique chromophore and for GV's biological activity, and is likely to occur similarly in the biosyntheses of other angucyclinone-derived antibiotics, such as the kinamycins and the jadomycins, it is only poorly understood. Herein we report various experiments which shed light onto this intriguing oxidative cleavage reaction. These include incorporation studies with 18O-labeled precursors and the isolation and structure determination of novel intermediates of gilvocarcin biosynthesis accumulated by mutants, in which two genes encoding monooxygenases responsible for the C−C-bond cleavage of the gilvocarcin pathway, gilOI and gilOIV, were deleted through targeted PCR.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0467521