Loading…
Thermal and Photochemical [2+2] Cycloreversion of a 1,2-Disilacyclobutane and a 1,2-Digermacyclobutane
Upon heating of the highly sterically congested 1,1,2,2-tetrakis(trimethylsilyl)dispiro[3,3‘,4,4‘-biadamantane-1,2-disilacyclobutane] (2) in solution in the presence of trapping reagents, such as 1,3-butadienes, styrene, phenylacetylene, and methanol, the trapping products of the silene bis(trimethy...
Saved in:
Published in: | Journal of the American Chemical Society 1998-02, Vol.120 (7), p.1398-1404 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Upon heating of the highly sterically congested 1,1,2,2-tetrakis(trimethylsilyl)dispiro[3,3‘,4,4‘-biadamantane-1,2-disilacyclobutane] (2) in solution in the presence of trapping reagents, such as 1,3-butadienes, styrene, phenylacetylene, and methanol, the trapping products of the silene bis(trimethylsilyl)adamantylidenesilene (1) are formed with high regioselectivity and good yields. Photolysis of 2 at −196 °C in methylcyclohexane in the absence of trapping agents produces tetrakis(trimethylsilyl)disilene (3). Photolysis of 2 in solution in the presence of 1,3-butadiene leads to a 2:1 mixture of 1,1,2,2-tetrakis(trimethylsilyl)-1,2-disilacyclohex-4-ene (10)the trapping product of the disilene 3and of 1,1-bis(trimethylsilyl)-1-silacyclopent-3-ene (11)the trapping product of bis(trimethylsilyl)silylene (4)together with 2,2‘-biadamantylidene. The results of laser flash photolysis and of additional trapping experiments suggest that the sole primary product in the photolysis of 2 is the disilene 3, which dissociates under further irradiation to produce the silylene 4. Heating of 1,1,2,2-tetrakis(trimethylsilyl)dispiro[3,3‘,4,4‘-biadamantane-1,2-digermacyclobutane] (14) in solution results in the quantitative formation of 2,2‘-biadamantylidene and of germanium-containing oligomers, while neither bis(trimethylsilyl)adamantylidenegermene (15) nor tetrakis(trimethylsilyl)digermene (16) or bis(trimethylsilyl)germylene (17) could be trapped. Upon photolysis 14 behaves similarly to 2, leading to 16 and 17, which could be trapped by 1,3-butadiene. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja9729600 |