Loading…
Lanmodulin: A Highly Selective Lanthanide-Binding Protein from a Lanthanide-Utilizing Bacterium
Lanthanides (Lns) have been shown recently to be essential cofactors in certain enzymes in methylotrophic bacteria. Here we identify in the model methylotroph, Methylobacterium extorquens, a highly selective LnIII-binding protein, which we name lanmodulin (LanM). LanM possesses four metal-binding EF...
Saved in:
Published in: | Journal of the American Chemical Society 2018-11, Vol.140 (44), p.15056-15061 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lanthanides (Lns) have been shown recently to be essential cofactors in certain enzymes in methylotrophic bacteria. Here we identify in the model methylotroph, Methylobacterium extorquens, a highly selective LnIII-binding protein, which we name lanmodulin (LanM). LanM possesses four metal-binding EF hand motifs, commonly associated with CaII-binding proteins. In contrast to other EF hand-containing proteins, however, LanM undergoes a large conformational change from a largely disordered state to a compact, ordered state in response to picomolar concentrations of all LnIII (Ln = La–Lu, Y), whereas it only responds to CaII at near-millimolar concentrations. Mutagenesis of conserved proline residues present in LanM’s EF hands, not encountered in CaII-binding EF hands, to alanine pushes CaII responsiveness into the micromolar concentration range while retaining picomolar LnIII affinity, suggesting that these unique proline residues play a key role in ensuring metal selectivity in vivo. Identification and characterization of LanM provides insights into how biology selectively recognizes low-abundance LnIII over higher-abundance CaII, pointing toward biotechnologies for detecting, sequestering, and separating these technologically important elements. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.8b09842 |