Loading…

Use of the DIPPR Database for Development of QSPR Correlations:  Surface Tension

Combination of commercial QSPR (quantitative structure−property relationship) software with an evaluated database creates a powerful tool for development of thermophysical property correlations. By using data quality codes in the DIPPR relational database, a training set of property values within a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical and engineering data 2001-09, Vol.46 (5), p.1007-1012
Main Authors: Knotts, Thomas A., Wilding, W. Vincent, Oscarson, John L., Rowley, Richard L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a362t-b87e7bf9f91f0d58d0a165ead419f7907c3f2bd757bfc1e7f3962a5d83cd0ffb3
cites cdi_FETCH-LOGICAL-a362t-b87e7bf9f91f0d58d0a165ead419f7907c3f2bd757bfc1e7f3962a5d83cd0ffb3
container_end_page 1012
container_issue 5
container_start_page 1007
container_title Journal of chemical and engineering data
container_volume 46
creator Knotts, Thomas A.
Wilding, W. Vincent
Oscarson, John L.
Rowley, Richard L.
description Combination of commercial QSPR (quantitative structure−property relationship) software with an evaluated database creates a powerful tool for development of thermophysical property correlations. By using data quality codes in the DIPPR relational database, a training set of property values within a desired accuracy level can be obtained for use in QSPR regression software. Moreover, additional database queries can be used to restrict the training set to specified families or functional groups and further refine the molecular descriptors that are used to correlate the property. This provides a good basis for rapid development of QSPR correlations of known uncertainty and chemical domain. This procedure is illustrated by its application to the extension of the Macleod−Sugden (Trans. Faraday Soc. 1923, 19, 38. Chem. Soc. 1924, 125, 32.) correlation for surface tension based upon the parachor. Quayle (Chem. Rev. 1953, 53, 439−591.) correlated the parachor in terms of additive atomic and structural increments but used a training set limited in temperature and scope. In this work, new molecular descriptors were selected consistent with the accuracy of the training set extracted from the DIPPR database, and their additive increments to the parachor were regressed from 8697 surface tension values of uncertainty less than 5% for 649 different compounds. This produced a correlation with an average absolute deviation (AAD) of 3.2%. This can be compared with an AAD of 6.9% using the Quayle descriptors for the same set.
doi_str_mv 10.1021/je000232d
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_je000232d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b377424929</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-b87e7bf9f91f0d58d0a165ead419f7907c3f2bd757bfc1e7f3962a5d83cd0ffb3</originalsourceid><addsrcrecordid>eNpt0L1OwzAQB3ALgUQpDLxBFgaGgD_iOGFDLZRKlShNKtisi2OLlDSp7BTBxspr8iS4KmoXJkt__-5OdwidE3xFMCXXC40xpoyWB6hHOMUhJyw6RD0fkjDlcXKMTpxbeBQJSnpoNnc6aE3QvepgOJ5OZ8EQOijAp6a1wVC_67pdLXXTbdRT5sGgtVbX0FVt425-vr6DbG0NKB3kunE-PEVHBmqnz_7ePprf3-WDh3DyOBoPbichsJh2YZEILQqTmpQYXPKkxEBirqGMSGpEioVihhal4B4pooVhaUyBlwlTJTamYH10ue2rbOuc1UaubLUE-ykJlptjyN0xvL3Y2hU4BbWx0KjK7QsiHHOChXfh1lWu0x-7f7BvMhZMcJlPM5m9kGeWipGM931BOblo17bxG_8z_xf8qXnx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Use of the DIPPR Database for Development of QSPR Correlations:  Surface Tension</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Knotts, Thomas A. ; Wilding, W. Vincent ; Oscarson, John L. ; Rowley, Richard L.</creator><creatorcontrib>Knotts, Thomas A. ; Wilding, W. Vincent ; Oscarson, John L. ; Rowley, Richard L.</creatorcontrib><description>Combination of commercial QSPR (quantitative structure−property relationship) software with an evaluated database creates a powerful tool for development of thermophysical property correlations. By using data quality codes in the DIPPR relational database, a training set of property values within a desired accuracy level can be obtained for use in QSPR regression software. Moreover, additional database queries can be used to restrict the training set to specified families or functional groups and further refine the molecular descriptors that are used to correlate the property. This provides a good basis for rapid development of QSPR correlations of known uncertainty and chemical domain. This procedure is illustrated by its application to the extension of the Macleod−Sugden (Trans. Faraday Soc. 1923, 19, 38. Chem. Soc. 1924, 125, 32.) correlation for surface tension based upon the parachor. Quayle (Chem. Rev. 1953, 53, 439−591.) correlated the parachor in terms of additive atomic and structural increments but used a training set limited in temperature and scope. In this work, new molecular descriptors were selected consistent with the accuracy of the training set extracted from the DIPPR database, and their additive increments to the parachor were regressed from 8697 surface tension values of uncertainty less than 5% for 649 different compounds. This produced a correlation with an average absolute deviation (AAD) of 3.2%. This can be compared with an AAD of 6.9% using the Quayle descriptors for the same set.</description><identifier>ISSN: 0021-9568</identifier><identifier>EISSN: 1520-5134</identifier><identifier>DOI: 10.1021/je000232d</identifier><identifier>CODEN: JCEAAX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; General, apparatus ; General. Nomenclature, chemical documentation, computer chemistry ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of chemical and engineering data, 2001-09, Vol.46 (5), p.1007-1012</ispartof><rights>Copyright © 2001 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-b87e7bf9f91f0d58d0a165ead419f7907c3f2bd757bfc1e7f3962a5d83cd0ffb3</citedby><cites>FETCH-LOGICAL-a362t-b87e7bf9f91f0d58d0a165ead419f7907c3f2bd757bfc1e7f3962a5d83cd0ffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14065107$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Knotts, Thomas A.</creatorcontrib><creatorcontrib>Wilding, W. Vincent</creatorcontrib><creatorcontrib>Oscarson, John L.</creatorcontrib><creatorcontrib>Rowley, Richard L.</creatorcontrib><title>Use of the DIPPR Database for Development of QSPR Correlations:  Surface Tension</title><title>Journal of chemical and engineering data</title><addtitle>J. Chem. Eng. Data</addtitle><description>Combination of commercial QSPR (quantitative structure−property relationship) software with an evaluated database creates a powerful tool for development of thermophysical property correlations. By using data quality codes in the DIPPR relational database, a training set of property values within a desired accuracy level can be obtained for use in QSPR regression software. Moreover, additional database queries can be used to restrict the training set to specified families or functional groups and further refine the molecular descriptors that are used to correlate the property. This provides a good basis for rapid development of QSPR correlations of known uncertainty and chemical domain. This procedure is illustrated by its application to the extension of the Macleod−Sugden (Trans. Faraday Soc. 1923, 19, 38. Chem. Soc. 1924, 125, 32.) correlation for surface tension based upon the parachor. Quayle (Chem. Rev. 1953, 53, 439−591.) correlated the parachor in terms of additive atomic and structural increments but used a training set limited in temperature and scope. In this work, new molecular descriptors were selected consistent with the accuracy of the training set extracted from the DIPPR database, and their additive increments to the parachor were regressed from 8697 surface tension values of uncertainty less than 5% for 649 different compounds. This produced a correlation with an average absolute deviation (AAD) of 3.2%. This can be compared with an AAD of 6.9% using the Quayle descriptors for the same set.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General, apparatus</subject><subject>General. Nomenclature, chemical documentation, computer chemistry</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9568</issn><issn>1520-5134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpt0L1OwzAQB3ALgUQpDLxBFgaGgD_iOGFDLZRKlShNKtisi2OLlDSp7BTBxspr8iS4KmoXJkt__-5OdwidE3xFMCXXC40xpoyWB6hHOMUhJyw6RD0fkjDlcXKMTpxbeBQJSnpoNnc6aE3QvepgOJ5OZ8EQOijAp6a1wVC_67pdLXXTbdRT5sGgtVbX0FVt425-vr6DbG0NKB3kunE-PEVHBmqnz_7ePprf3-WDh3DyOBoPbichsJh2YZEILQqTmpQYXPKkxEBirqGMSGpEioVihhal4B4pooVhaUyBlwlTJTamYH10ue2rbOuc1UaubLUE-ykJlptjyN0xvL3Y2hU4BbWx0KjK7QsiHHOChXfh1lWu0x-7f7BvMhZMcJlPM5m9kGeWipGM931BOblo17bxG_8z_xf8qXnx</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Knotts, Thomas A.</creator><creator>Wilding, W. Vincent</creator><creator>Oscarson, John L.</creator><creator>Rowley, Richard L.</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010901</creationdate><title>Use of the DIPPR Database for Development of QSPR Correlations:  Surface Tension</title><author>Knotts, Thomas A. ; Wilding, W. Vincent ; Oscarson, John L. ; Rowley, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-b87e7bf9f91f0d58d0a165ead419f7907c3f2bd757bfc1e7f3962a5d83cd0ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General, apparatus</topic><topic>General. Nomenclature, chemical documentation, computer chemistry</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knotts, Thomas A.</creatorcontrib><creatorcontrib>Wilding, W. Vincent</creatorcontrib><creatorcontrib>Oscarson, John L.</creatorcontrib><creatorcontrib>Rowley, Richard L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of chemical and engineering data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knotts, Thomas A.</au><au>Wilding, W. Vincent</au><au>Oscarson, John L.</au><au>Rowley, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the DIPPR Database for Development of QSPR Correlations:  Surface Tension</atitle><jtitle>Journal of chemical and engineering data</jtitle><addtitle>J. Chem. Eng. Data</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>46</volume><issue>5</issue><spage>1007</spage><epage>1012</epage><pages>1007-1012</pages><issn>0021-9568</issn><eissn>1520-5134</eissn><coden>JCEAAX</coden><abstract>Combination of commercial QSPR (quantitative structure−property relationship) software with an evaluated database creates a powerful tool for development of thermophysical property correlations. By using data quality codes in the DIPPR relational database, a training set of property values within a desired accuracy level can be obtained for use in QSPR regression software. Moreover, additional database queries can be used to restrict the training set to specified families or functional groups and further refine the molecular descriptors that are used to correlate the property. This provides a good basis for rapid development of QSPR correlations of known uncertainty and chemical domain. This procedure is illustrated by its application to the extension of the Macleod−Sugden (Trans. Faraday Soc. 1923, 19, 38. Chem. Soc. 1924, 125, 32.) correlation for surface tension based upon the parachor. Quayle (Chem. Rev. 1953, 53, 439−591.) correlated the parachor in terms of additive atomic and structural increments but used a training set limited in temperature and scope. In this work, new molecular descriptors were selected consistent with the accuracy of the training set extracted from the DIPPR database, and their additive increments to the parachor were regressed from 8697 surface tension values of uncertainty less than 5% for 649 different compounds. This produced a correlation with an average absolute deviation (AAD) of 3.2%. This can be compared with an AAD of 6.9% using the Quayle descriptors for the same set.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/je000232d</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9568
ispartof Journal of chemical and engineering data, 2001-09, Vol.46 (5), p.1007-1012
issn 0021-9568
1520-5134
language eng
recordid cdi_crossref_primary_10_1021_je000232d
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Exact sciences and technology
General and physical chemistry
General, apparatus
General. Nomenclature, chemical documentation, computer chemistry
Surface physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Use of the DIPPR Database for Development of QSPR Correlations:  Surface Tension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20DIPPR%20Database%20for%20Development%20of%20QSPR%20Correlations:%E2%80%89%20Surface%20Tension&rft.jtitle=Journal%20of%20chemical%20and%20engineering%20data&rft.au=Knotts,%20Thomas%20A.&rft.date=2001-09-01&rft.volume=46&rft.issue=5&rft.spage=1007&rft.epage=1012&rft.pages=1007-1012&rft.issn=0021-9568&rft.eissn=1520-5134&rft.coden=JCEAAX&rft_id=info:doi/10.1021/je000232d&rft_dat=%3Cacs_cross%3Eb377424929%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a362t-b87e7bf9f91f0d58d0a165ead419f7907c3f2bd757bfc1e7f3962a5d83cd0ffb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true