Loading…
Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance
Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism...
Saved in:
Published in: | Journal of agricultural and food chemistry 2011-04, Vol.59 (7), p.2923-2931 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363 |
---|---|
cites | cdi_FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363 |
container_end_page | 2931 |
container_issue | 7 |
container_start_page | 2923 |
container_title | Journal of agricultural and food chemistry |
container_volume | 59 |
creator | Casida, John E |
description | Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype. |
doi_str_mv | 10.1021/jf102438c |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jf102438c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a664971767</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWw4AegGxZIBPyInYQdqspDKhRRuiWa2E5JldhVnIDK1-Oqpd2wmmvN8WjmIHRK8DXBlNzMc19CFss91CWc4oATEu-jLvbNIOaCdNCRc3OMccwjfIg6FEeMMB530ceLtqaQtimMLVT_WTeQ2bJw1W1_YKuFbY1yV_1Jm7mmaFptGv96hebzG5Y-Dc3PstI-jOsZGP_LRzCq_6ZL_QVG6mN0kEPp9Mmm9tD0fvg-eAxG44enwd0ogJCFjd83wpmWSjCaKY4jHZJcCJ6vupRSojCjIiYyjihlCQjFtc6AiYT5QJlgPXS5nitr61yt83RRFxXUy5TgdOUo3Try7NmaXbRZpdWW_JPigYsNAE5Cmdf-ksLtuBBHPBEr7nzN5WBTmNWemU4oJqEXnfAwIbtJIF06t21tvIR_VvoFsiWC_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Casida, John E</creator><creatorcontrib>Casida, John E</creatorcontrib><description>Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf102438c</identifier><identifier>PMID: 20731358</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>acetylation ; agonists ; Aldehyde Oxidase - metabolism ; Anabasine - agonists ; Animals ; Bacteria - enzymology ; Biodegradation, Environmental ; Biological and medical sciences ; chemotypes ; Cytochrome P-450 Enzyme System - metabolism ; enzymes ; Food industries ; Fundamental and applied biological sciences. Psychology ; hepatotoxicity ; hydroxylation ; Imidazoles - metabolism ; Insecta - enzymology ; Insecticide Resistance ; Insecticides - metabolism ; isozymes ; metabolism ; metabolites ; methylation ; Models, Molecular ; mutants ; neonicotinoid insecticides ; Neonicotinoids ; Nitro Compounds - metabolism ; pest resistance ; Receptors, Nicotinic ; toxicology ; vigor</subject><ispartof>Journal of agricultural and food chemistry, 2011-04, Vol.59 (7), p.2923-2931</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363</citedby><cites>FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24075968$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20731358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casida, John E</creatorcontrib><title>Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.</description><subject>acetylation</subject><subject>agonists</subject><subject>Aldehyde Oxidase - metabolism</subject><subject>Anabasine - agonists</subject><subject>Animals</subject><subject>Bacteria - enzymology</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>chemotypes</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>enzymes</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hepatotoxicity</subject><subject>hydroxylation</subject><subject>Imidazoles - metabolism</subject><subject>Insecta - enzymology</subject><subject>Insecticide Resistance</subject><subject>Insecticides - metabolism</subject><subject>isozymes</subject><subject>metabolism</subject><subject>metabolites</subject><subject>methylation</subject><subject>Models, Molecular</subject><subject>mutants</subject><subject>neonicotinoid insecticides</subject><subject>Neonicotinoids</subject><subject>Nitro Compounds - metabolism</subject><subject>pest resistance</subject><subject>Receptors, Nicotinic</subject><subject>toxicology</subject><subject>vigor</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EoqWw4AegGxZIBPyInYQdqspDKhRRuiWa2E5JldhVnIDK1-Oqpd2wmmvN8WjmIHRK8DXBlNzMc19CFss91CWc4oATEu-jLvbNIOaCdNCRc3OMccwjfIg6FEeMMB530ceLtqaQtimMLVT_WTeQ2bJw1W1_YKuFbY1yV_1Jm7mmaFptGv96hebzG5Y-Dc3PstI-jOsZGP_LRzCq_6ZL_QVG6mN0kEPp9Mmm9tD0fvg-eAxG44enwd0ogJCFjd83wpmWSjCaKY4jHZJcCJ6vupRSojCjIiYyjihlCQjFtc6AiYT5QJlgPXS5nitr61yt83RRFxXUy5TgdOUo3Try7NmaXbRZpdWW_JPigYsNAE5Cmdf-ksLtuBBHPBEr7nzN5WBTmNWemU4oJqEXnfAwIbtJIF06t21tvIR_VvoFsiWC_g</recordid><startdate>20110413</startdate><enddate>20110413</enddate><creator>Casida, John E</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110413</creationdate><title>Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance</title><author>Casida, John E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>acetylation</topic><topic>agonists</topic><topic>Aldehyde Oxidase - metabolism</topic><topic>Anabasine - agonists</topic><topic>Animals</topic><topic>Bacteria - enzymology</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>chemotypes</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>enzymes</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hepatotoxicity</topic><topic>hydroxylation</topic><topic>Imidazoles - metabolism</topic><topic>Insecta - enzymology</topic><topic>Insecticide Resistance</topic><topic>Insecticides - metabolism</topic><topic>isozymes</topic><topic>metabolism</topic><topic>metabolites</topic><topic>methylation</topic><topic>Models, Molecular</topic><topic>mutants</topic><topic>neonicotinoid insecticides</topic><topic>Neonicotinoids</topic><topic>Nitro Compounds - metabolism</topic><topic>pest resistance</topic><topic>Receptors, Nicotinic</topic><topic>toxicology</topic><topic>vigor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casida, John E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casida, John E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2011-04-13</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>2923</spage><epage>2931</epage><pages>2923-2931</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20731358</pmid><doi>10.1021/jf102438c</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2011-04, Vol.59 (7), p.2923-2931 |
issn | 0021-8561 1520-5118 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jf102438c |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | acetylation agonists Aldehyde Oxidase - metabolism Anabasine - agonists Animals Bacteria - enzymology Biodegradation, Environmental Biological and medical sciences chemotypes Cytochrome P-450 Enzyme System - metabolism enzymes Food industries Fundamental and applied biological sciences. Psychology hepatotoxicity hydroxylation Imidazoles - metabolism Insecta - enzymology Insecticide Resistance Insecticides - metabolism isozymes metabolism metabolites methylation Models, Molecular mutants neonicotinoid insecticides Neonicotinoids Nitro Compounds - metabolism pest resistance Receptors, Nicotinic toxicology vigor |
title | Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neonicotinoid%20Metabolism:%20Compounds,%20Substituents,%20Pathways,%20Enzymes,%20Organisms,%20and%20Relevance&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Casida,%20John%20E&rft.date=2011-04-13&rft.volume=59&rft.issue=7&rft.spage=2923&rft.epage=2931&rft.pages=2923-2931&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf102438c&rft_dat=%3Cacs_cross%3Ea664971767%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20731358&rfr_iscdi=true |