Loading…

Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance

Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2011-04, Vol.59 (7), p.2923-2931
Main Author: Casida, John E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363
cites cdi_FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363
container_end_page 2931
container_issue 7
container_start_page 2923
container_title Journal of agricultural and food chemistry
container_volume 59
creator Casida, John E
description Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.
doi_str_mv 10.1021/jf102438c
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jf102438c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a664971767</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWw4AegGxZIBPyInYQdqspDKhRRuiWa2E5JldhVnIDK1-Oqpd2wmmvN8WjmIHRK8DXBlNzMc19CFss91CWc4oATEu-jLvbNIOaCdNCRc3OMccwjfIg6FEeMMB530ceLtqaQtimMLVT_WTeQ2bJw1W1_YKuFbY1yV_1Jm7mmaFptGv96hebzG5Y-Dc3PstI-jOsZGP_LRzCq_6ZL_QVG6mN0kEPp9Mmm9tD0fvg-eAxG44enwd0ogJCFjd83wpmWSjCaKY4jHZJcCJ6vupRSojCjIiYyjihlCQjFtc6AiYT5QJlgPXS5nitr61yt83RRFxXUy5TgdOUo3Try7NmaXbRZpdWW_JPigYsNAE5Cmdf-ksLtuBBHPBEr7nzN5WBTmNWemU4oJqEXnfAwIbtJIF06t21tvIR_VvoFsiWC_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Casida, John E</creator><creatorcontrib>Casida, John E</creatorcontrib><description>Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf102438c</identifier><identifier>PMID: 20731358</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>acetylation ; agonists ; Aldehyde Oxidase - metabolism ; Anabasine - agonists ; Animals ; Bacteria - enzymology ; Biodegradation, Environmental ; Biological and medical sciences ; chemotypes ; Cytochrome P-450 Enzyme System - metabolism ; enzymes ; Food industries ; Fundamental and applied biological sciences. Psychology ; hepatotoxicity ; hydroxylation ; Imidazoles - metabolism ; Insecta - enzymology ; Insecticide Resistance ; Insecticides - metabolism ; isozymes ; metabolism ; metabolites ; methylation ; Models, Molecular ; mutants ; neonicotinoid insecticides ; Neonicotinoids ; Nitro Compounds - metabolism ; pest resistance ; Receptors, Nicotinic ; toxicology ; vigor</subject><ispartof>Journal of agricultural and food chemistry, 2011-04, Vol.59 (7), p.2923-2931</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363</citedby><cites>FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24075968$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20731358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casida, John E</creatorcontrib><title>Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.</description><subject>acetylation</subject><subject>agonists</subject><subject>Aldehyde Oxidase - metabolism</subject><subject>Anabasine - agonists</subject><subject>Animals</subject><subject>Bacteria - enzymology</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>chemotypes</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>enzymes</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hepatotoxicity</subject><subject>hydroxylation</subject><subject>Imidazoles - metabolism</subject><subject>Insecta - enzymology</subject><subject>Insecticide Resistance</subject><subject>Insecticides - metabolism</subject><subject>isozymes</subject><subject>metabolism</subject><subject>metabolites</subject><subject>methylation</subject><subject>Models, Molecular</subject><subject>mutants</subject><subject>neonicotinoid insecticides</subject><subject>Neonicotinoids</subject><subject>Nitro Compounds - metabolism</subject><subject>pest resistance</subject><subject>Receptors, Nicotinic</subject><subject>toxicology</subject><subject>vigor</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EoqWw4AegGxZIBPyInYQdqspDKhRRuiWa2E5JldhVnIDK1-Oqpd2wmmvN8WjmIHRK8DXBlNzMc19CFss91CWc4oATEu-jLvbNIOaCdNCRc3OMccwjfIg6FEeMMB530ceLtqaQtimMLVT_WTeQ2bJw1W1_YKuFbY1yV_1Jm7mmaFptGv96hebzG5Y-Dc3PstI-jOsZGP_LRzCq_6ZL_QVG6mN0kEPp9Mmm9tD0fvg-eAxG44enwd0ogJCFjd83wpmWSjCaKY4jHZJcCJ6vupRSojCjIiYyjihlCQjFtc6AiYT5QJlgPXS5nitr61yt83RRFxXUy5TgdOUo3Try7NmaXbRZpdWW_JPigYsNAE5Cmdf-ksLtuBBHPBEr7nzN5WBTmNWemU4oJqEXnfAwIbtJIF06t21tvIR_VvoFsiWC_g</recordid><startdate>20110413</startdate><enddate>20110413</enddate><creator>Casida, John E</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110413</creationdate><title>Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance</title><author>Casida, John E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>acetylation</topic><topic>agonists</topic><topic>Aldehyde Oxidase - metabolism</topic><topic>Anabasine - agonists</topic><topic>Animals</topic><topic>Bacteria - enzymology</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>chemotypes</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>enzymes</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hepatotoxicity</topic><topic>hydroxylation</topic><topic>Imidazoles - metabolism</topic><topic>Insecta - enzymology</topic><topic>Insecticide Resistance</topic><topic>Insecticides - metabolism</topic><topic>isozymes</topic><topic>metabolism</topic><topic>metabolites</topic><topic>methylation</topic><topic>Models, Molecular</topic><topic>mutants</topic><topic>neonicotinoid insecticides</topic><topic>Neonicotinoids</topic><topic>Nitro Compounds - metabolism</topic><topic>pest resistance</topic><topic>Receptors, Nicotinic</topic><topic>toxicology</topic><topic>vigor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casida, John E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casida, John E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2011-04-13</date><risdate>2011</risdate><volume>59</volume><issue>7</issue><spage>2923</spage><epage>2931</epage><pages>2923-2931</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20731358</pmid><doi>10.1021/jf102438c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2011-04, Vol.59 (7), p.2923-2931
issn 0021-8561
1520-5118
language eng
recordid cdi_crossref_primary_10_1021_jf102438c
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects acetylation
agonists
Aldehyde Oxidase - metabolism
Anabasine - agonists
Animals
Bacteria - enzymology
Biodegradation, Environmental
Biological and medical sciences
chemotypes
Cytochrome P-450 Enzyme System - metabolism
enzymes
Food industries
Fundamental and applied biological sciences. Psychology
hepatotoxicity
hydroxylation
Imidazoles - metabolism
Insecta - enzymology
Insecticide Resistance
Insecticides - metabolism
isozymes
metabolism
metabolites
methylation
Models, Molecular
mutants
neonicotinoid insecticides
Neonicotinoids
Nitro Compounds - metabolism
pest resistance
Receptors, Nicotinic
toxicology
vigor
title Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neonicotinoid%20Metabolism:%20Compounds,%20Substituents,%20Pathways,%20Enzymes,%20Organisms,%20and%20Relevance&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Casida,%20John%20E&rft.date=2011-04-13&rft.volume=59&rft.issue=7&rft.spage=2923&rft.epage=2931&rft.pages=2923-2931&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf102438c&rft_dat=%3Cacs_cross%3Ea664971767%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a434t-5170becd632bd507e41f665fa4342221d032681c872239a6d5eeba36935ee2363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20731358&rfr_iscdi=true