Loading…

Contact and Fumigant Toxicity of a Botanical-Based Feeding Deterrent of the Stable Fly, Stomoxys calcitrans (Diptera: Muscidae)

The stable fly, Stomoxys calcitrans (L.), has been considered one of the most serious biting flies of confined and pastured livestock. The economic losses caused by the stable fly to the cattle industry in the United States exceed $2 billion annually. Current practices for managing stable flies usin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2011-09, Vol.59 (18), p.10394-10400
Main Authors: Zhu, Junwei J, Li, Andrew Y, Pritchard, Sara, Tangtrakulwanich, Khanobporn, Baxendale, Frederick P, Brewer, Gary
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stable fly, Stomoxys calcitrans (L.), has been considered one of the most serious biting flies of confined and pastured livestock. The economic losses caused by the stable fly to the cattle industry in the United States exceed $2 billion annually. Current practices for managing stable flies using insecticides provide only marginal control. Insecticide resistance has also been recently reported in stable flies. The present study reports the use of plant-based insecticides, for example, essential oils, as alternatives for managing this fly pest. The toxicity of several plant essential oils and selected ingredient compounds was evaluated by contact and fumigant toxicity bioassays. Catnip oil (20 mg dosage) showed the highest toxicity against stable flies, the shortest knock-down time (∼7 min), and the quickest lethal time (∼19 min). Toxicity levels similar to catnip oil were found among three insect repellent compounds (N,N-diethyl-3-methylbenzamide, 2-methylpiperidinyl-3-cyclohexene-1-carboxamide, (1S,2′S)-2-methylpiperidinyl-3-cyclohexene-1-carboxamide). No differences in knock-down and lethal times were found among the catnip oil and its two active ingredient compounds. Similar stable fly mortality was observed using a 20 mg dose of catnip oil in a modified K&D system and a fumigant jar. When catnip oil was topically applied to stable flies, the least lethal dose was 12.5 μg/fly, and a 50 μg/fly dose resulted in 100% mortality. The blood-feeding behavior of stable flies was also negatively affected by the topical application of catnip oil, and the effect was dose-dependent. This study demonstrated that catnip oil has both contact and fumigant toxicity against the stable fly and thus has the potential as an alternative for stable fly control.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf2016122