Loading…

Synthesis and Biological Activity of Analogues of the Antimicrotubule Agent N,β,β-Trimethyl-l-phenylalanyl-N -[(1S,2E)-3-carboxy-1-isopropylbut-2-enyl]- N 1,3-dimethyl-l-valinamide (HTI-286)

Hemiasterlin (1), a tripeptide isolated from marine sponges, induces microtubule depolymerization and mitotic arrest in cells. HTI-286 (2), an analogue from an initial study of the hemiasterlins, is presently in clinical trials. In addition to its potent antitumor effects, 2 has the advantage of cir...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2004-09, Vol.47 (19), p.4774-4786
Main Authors: Zask, Arie, Birnberg, Gary, Cheung, Katherine, Kaplan, Joshua, Niu, Chuan, Norton, Emily, Suayan, Ronald, Yamashita, Ayako, Cole, Derek, Tang, Zhilian, Krishnamurthy, Girija, Williamson, Robert, Khafizova, Gulnaz, Musto, Sylvia, Hernandez, Richard, Annable, Tami, Yang, Xiaoran, Discafani, Carolyn, Beyer, Carl, Greenberger, Lee M, Loganzo, Frank, Ayral-Kaloustian, Semiramis
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hemiasterlin (1), a tripeptide isolated from marine sponges, induces microtubule depolymerization and mitotic arrest in cells. HTI-286 (2), an analogue from an initial study of the hemiasterlins, is presently in clinical trials. In addition to its potent antitumor effects, 2 has the advantage of circumventing the P-glycoprotein-mediated resistance that hampers the efficacy of other antimicrotubule agents such as paclitaxel and vincristine in animal models. This paper describes an in-depth study of the structure−activity relationships of analogues of 2, their effects on microtubule polymerization, and their in vitro and in vivo anticancer activity. Regions of the molecule necessary for potent activity are identified. Groups tolerant of modification, leading to novel analogues, are reported. Potent analogues identified through in vivo studies in tumor xenograft models include one superior analogue, HTI-042 (48).
ISSN:0022-2623
1520-4804
DOI:10.1021/jm040056u