Loading…

Theoretical Foundation for the Presence of Oxacarbenium Ions in Chemical Glycoside Synthesis

Glycoside formation in organic synthesis is believed to occur along a reaction path involving an activated glycosyl donor with a covalent bond between the glycosyl moiety and the leaving group, followed by formation of contact ion pairs with the glycosyl moiety loosely bound to the leaving group, an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2014-09, Vol.79 (17), p.7889-7894
Main Authors: Hosoya, Takashi, Takano, Toshiyuki, Kosma, Paul, Rosenau, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-70d07fa289c031127549a852e47523bdd1ccfcea754c33e4847a950e38d57c5b3
cites cdi_FETCH-LOGICAL-a348t-70d07fa289c031127549a852e47523bdd1ccfcea754c33e4847a950e38d57c5b3
container_end_page 7894
container_issue 17
container_start_page 7889
container_title Journal of organic chemistry
container_volume 79
creator Hosoya, Takashi
Takano, Toshiyuki
Kosma, Paul
Rosenau, Thomas
description Glycoside formation in organic synthesis is believed to occur along a reaction path involving an activated glycosyl donor with a covalent bond between the glycosyl moiety and the leaving group, followed by formation of contact ion pairs with the glycosyl moiety loosely bound to the leaving group, and eventually solvent-separated ion pairs with the glycosyl moiety and the leaving group being separated by solvent molecules. However, these ion pairs have never been experimentally observed. This study investigates the formation of the ion pairs from a covalent intermediate, 2,3,4,6-tetra-O-methyl-α-d-glucopyranosyl triflate, by means of computational chemistry. Geometry optimization of the ion pairs without solvent molecules resulted in re-formation of the covalent α- and β-triflates but was successful when four solvent (dichloromethane) molecules were taken into account. The DFT(M06-2X) computations indicated interconversion between the α- and β-covalent intermediates via the α- and β-contact ion pairs and the solvent-separated ion pairs. The calculated activation Gibbs energy of this interconversion was quite small (10.4–13.5 kcal/mol). Conformational analyses of the ion pairs indicated that the oxacarbenium ion adopts 4H3, 2H3/E3, 2H3/2S0, E3, 2,5B, and B2,5 pyranosyl ring conformations, with the stability of the conformers being strongly dependent on the relative location of the counteranion.
doi_str_mv 10.1021/jo501012s
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jo501012s</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a84578668</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-70d07fa289c031127549a852e47523bdd1ccfcea754c33e4847a950e38d57c5b3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotlYP_gHJxYOH1Umy2Y-jFFuFQgXrTViy2Vma0k1Ksgv23xut9uRcBobnfRkeQq4Z3DPg7GHjJDBgPJyQMZMckqyE9JSMAThPBM_EiFyEsIE4UspzMuKSgcwyMSYfqzU6j73RaktnbrCN6o2ztHWe9mukrx4DWo3UtXT5qbTyNVozdPTF2UCNpdM1dj_h-XavXTAN0re9jdFgwiU5a9U24NXvnpD32dNq-pwslvOX6eMiUSIt-iSHBvJW8aLUIBjjuUxLVUiOaS65qJuGad1qVPGuhcC0SHNVSkBRNDLXshYTcnfo1d6F4LGtdt50yu8rBtW3oepoKLI3B3Y31B02R_JPSQRuD4DSIeYGb-Pr_xR9AfkcbRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical Foundation for the Presence of Oxacarbenium Ions in Chemical Glycoside Synthesis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hosoya, Takashi ; Takano, Toshiyuki ; Kosma, Paul ; Rosenau, Thomas</creator><creatorcontrib>Hosoya, Takashi ; Takano, Toshiyuki ; Kosma, Paul ; Rosenau, Thomas</creatorcontrib><description>Glycoside formation in organic synthesis is believed to occur along a reaction path involving an activated glycosyl donor with a covalent bond between the glycosyl moiety and the leaving group, followed by formation of contact ion pairs with the glycosyl moiety loosely bound to the leaving group, and eventually solvent-separated ion pairs with the glycosyl moiety and the leaving group being separated by solvent molecules. However, these ion pairs have never been experimentally observed. This study investigates the formation of the ion pairs from a covalent intermediate, 2,3,4,6-tetra-O-methyl-α-d-glucopyranosyl triflate, by means of computational chemistry. Geometry optimization of the ion pairs without solvent molecules resulted in re-formation of the covalent α- and β-triflates but was successful when four solvent (dichloromethane) molecules were taken into account. The DFT(M06-2X) computations indicated interconversion between the α- and β-covalent intermediates via the α- and β-contact ion pairs and the solvent-separated ion pairs. The calculated activation Gibbs energy of this interconversion was quite small (10.4–13.5 kcal/mol). Conformational analyses of the ion pairs indicated that the oxacarbenium ion adopts 4H3, 2H3/E3, 2H3/2S0, E3, 2,5B, and B2,5 pyranosyl ring conformations, with the stability of the conformers being strongly dependent on the relative location of the counteranion.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/jo501012s</identifier><identifier>PMID: 25105663</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Glycosides - chemical synthesis ; Glycosides - chemistry ; Ions - chemistry ; Methyl Chloride - analogs &amp; derivatives ; Methyl Chloride - chemistry ; Models, Molecular</subject><ispartof>Journal of organic chemistry, 2014-09, Vol.79 (17), p.7889-7894</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-70d07fa289c031127549a852e47523bdd1ccfcea754c33e4847a950e38d57c5b3</citedby><cites>FETCH-LOGICAL-a348t-70d07fa289c031127549a852e47523bdd1ccfcea754c33e4847a950e38d57c5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25105663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosoya, Takashi</creatorcontrib><creatorcontrib>Takano, Toshiyuki</creatorcontrib><creatorcontrib>Kosma, Paul</creatorcontrib><creatorcontrib>Rosenau, Thomas</creatorcontrib><title>Theoretical Foundation for the Presence of Oxacarbenium Ions in Chemical Glycoside Synthesis</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>Glycoside formation in organic synthesis is believed to occur along a reaction path involving an activated glycosyl donor with a covalent bond between the glycosyl moiety and the leaving group, followed by formation of contact ion pairs with the glycosyl moiety loosely bound to the leaving group, and eventually solvent-separated ion pairs with the glycosyl moiety and the leaving group being separated by solvent molecules. However, these ion pairs have never been experimentally observed. This study investigates the formation of the ion pairs from a covalent intermediate, 2,3,4,6-tetra-O-methyl-α-d-glucopyranosyl triflate, by means of computational chemistry. Geometry optimization of the ion pairs without solvent molecules resulted in re-formation of the covalent α- and β-triflates but was successful when four solvent (dichloromethane) molecules were taken into account. The DFT(M06-2X) computations indicated interconversion between the α- and β-covalent intermediates via the α- and β-contact ion pairs and the solvent-separated ion pairs. The calculated activation Gibbs energy of this interconversion was quite small (10.4–13.5 kcal/mol). Conformational analyses of the ion pairs indicated that the oxacarbenium ion adopts 4H3, 2H3/E3, 2H3/2S0, E3, 2,5B, and B2,5 pyranosyl ring conformations, with the stability of the conformers being strongly dependent on the relative location of the counteranion.</description><subject>Glycosides - chemical synthesis</subject><subject>Glycosides - chemistry</subject><subject>Ions - chemistry</subject><subject>Methyl Chloride - analogs &amp; derivatives</subject><subject>Methyl Chloride - chemistry</subject><subject>Models, Molecular</subject><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMotlYP_gHJxYOH1Umy2Y-jFFuFQgXrTViy2Vma0k1Ksgv23xut9uRcBobnfRkeQq4Z3DPg7GHjJDBgPJyQMZMckqyE9JSMAThPBM_EiFyEsIE4UspzMuKSgcwyMSYfqzU6j73RaktnbrCN6o2ztHWe9mukrx4DWo3UtXT5qbTyNVozdPTF2UCNpdM1dj_h-XavXTAN0re9jdFgwiU5a9U24NXvnpD32dNq-pwslvOX6eMiUSIt-iSHBvJW8aLUIBjjuUxLVUiOaS65qJuGad1qVPGuhcC0SHNVSkBRNDLXshYTcnfo1d6F4LGtdt50yu8rBtW3oepoKLI3B3Y31B02R_JPSQRuD4DSIeYGb-Pr_xR9AfkcbRw</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Hosoya, Takashi</creator><creator>Takano, Toshiyuki</creator><creator>Kosma, Paul</creator><creator>Rosenau, Thomas</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140905</creationdate><title>Theoretical Foundation for the Presence of Oxacarbenium Ions in Chemical Glycoside Synthesis</title><author>Hosoya, Takashi ; Takano, Toshiyuki ; Kosma, Paul ; Rosenau, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-70d07fa289c031127549a852e47523bdd1ccfcea754c33e4847a950e38d57c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Glycosides - chemical synthesis</topic><topic>Glycosides - chemistry</topic><topic>Ions - chemistry</topic><topic>Methyl Chloride - analogs &amp; derivatives</topic><topic>Methyl Chloride - chemistry</topic><topic>Models, Molecular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosoya, Takashi</creatorcontrib><creatorcontrib>Takano, Toshiyuki</creatorcontrib><creatorcontrib>Kosma, Paul</creatorcontrib><creatorcontrib>Rosenau, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosoya, Takashi</au><au>Takano, Toshiyuki</au><au>Kosma, Paul</au><au>Rosenau, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Foundation for the Presence of Oxacarbenium Ions in Chemical Glycoside Synthesis</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>79</volume><issue>17</issue><spage>7889</spage><epage>7894</epage><pages>7889-7894</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><abstract>Glycoside formation in organic synthesis is believed to occur along a reaction path involving an activated glycosyl donor with a covalent bond between the glycosyl moiety and the leaving group, followed by formation of contact ion pairs with the glycosyl moiety loosely bound to the leaving group, and eventually solvent-separated ion pairs with the glycosyl moiety and the leaving group being separated by solvent molecules. However, these ion pairs have never been experimentally observed. This study investigates the formation of the ion pairs from a covalent intermediate, 2,3,4,6-tetra-O-methyl-α-d-glucopyranosyl triflate, by means of computational chemistry. Geometry optimization of the ion pairs without solvent molecules resulted in re-formation of the covalent α- and β-triflates but was successful when four solvent (dichloromethane) molecules were taken into account. The DFT(M06-2X) computations indicated interconversion between the α- and β-covalent intermediates via the α- and β-contact ion pairs and the solvent-separated ion pairs. The calculated activation Gibbs energy of this interconversion was quite small (10.4–13.5 kcal/mol). Conformational analyses of the ion pairs indicated that the oxacarbenium ion adopts 4H3, 2H3/E3, 2H3/2S0, E3, 2,5B, and B2,5 pyranosyl ring conformations, with the stability of the conformers being strongly dependent on the relative location of the counteranion.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25105663</pmid><doi>10.1021/jo501012s</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2014-09, Vol.79 (17), p.7889-7894
issn 0022-3263
1520-6904
language eng
recordid cdi_crossref_primary_10_1021_jo501012s
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Glycosides - chemical synthesis
Glycosides - chemistry
Ions - chemistry
Methyl Chloride - analogs & derivatives
Methyl Chloride - chemistry
Models, Molecular
title Theoretical Foundation for the Presence of Oxacarbenium Ions in Chemical Glycoside Synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Foundation%20for%20the%20Presence%20of%20Oxacarbenium%20Ions%20in%20Chemical%20Glycoside%20Synthesis&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Hosoya,%20Takashi&rft.date=2014-09-05&rft.volume=79&rft.issue=17&rft.spage=7889&rft.epage=7894&rft.pages=7889-7894&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/jo501012s&rft_dat=%3Cacs_cross%3Ea84578668%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-70d07fa289c031127549a852e47523bdd1ccfcea754c33e4847a950e38d57c5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/25105663&rfr_iscdi=true