Loading…
Exciton Self Trapping in One-Dimensional Photosynthetic Antennas
Experimental evidence is presented showing that excitons in circular antenna complexes from photosynthetic bacteria are dynamically self trapped in about 200 fs by coupling to nuclear vibrations. The induced deformation covers ∼20% of the complex circumference at low temperature. This self trapping,...
Saved in:
Published in: | The journal of physical chemistry. B 2001-12, Vol.105 (49), p.12223-12225 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experimental evidence is presented showing that excitons in circular antenna complexes from photosynthetic bacteria are dynamically self trapped in about 200 fs by coupling to nuclear vibrations. The induced deformation covers ∼20% of the complex circumference at low temperature. This self trapping, the first of its kind observed in biological systems, results in a broad fluorescence spectrum and considerably improves energy resonance between heterogeneous antenna complexes. Exciton self trapping may thus be a part of nature's strategy, increasing the speed and efficiency of energy transfer in photosynthesis. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp011147v |