Loading…

Principle in Imaging Contrast in Scanning Electron Microscopy for Binary Microstructures Composed of Organosilane Self-Assembled Monolayers

Field-emission electron microscopy (FE-SEM) was applied to observe coplanar microstructures composed of two different types of organosilane self-assembled monolayers (SAMs). These binary microstructures were prepared on silicon substrates covered with native oxide by a lithographic technique. Four t...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2003-01, Vol.107 (3), p.664-667
Main Authors: Saito, N, Wu, Y, Hayashi, K, Sugimura, H, Takai, O
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Field-emission electron microscopy (FE-SEM) was applied to observe coplanar microstructures composed of two different types of organosilane self-assembled monolayers (SAMs). These binary microstructures were prepared on silicon substrates covered with native oxide by a lithographic technique. Four types of organosilane precursors, they are n-octadecyltrimethoxysilane (ODS), heptadecafluoro-1,1,2,2-tetrahydro-decyl-1-trimethoxysilane (a type of fluoroalkylsilane, FAS), n-(6-aminohexyl)aminopropyltrimethoxysilane (AHAPS), and 4-(chloromethyl)phenyltrimethoxysilane (CMPhS), were used in this study. Micropatterns composed of the SAMs were clearly imaged by FE-SEM at low acceleration voltages, around 0.6 kV. The brightness order of the SAMs in FE-SEM was ODS > AHAPS > CMPhS > FAS. Through ab initio molecular orbital calculations, the origin of this FE-SEM contrast was ascribed to the electron affinity between the SAMs, which governed the FE-SEM image contrast. It has been successfully demonstrated that FE-SEM could provide us chemical information on organic films with a monomolecular thickness on a solid support.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp021362r