Loading…
Analysis of Gas-Phase Clusters Made from Laser-Vaporized Icosahedral Al−Pd−Mn
An icosahedral Al−Pd−Mn quasicrystal sample is laser vaporized to form metal clusters by gas aggregation. The clusters are subsequently laser ionized and mass analyzed in a time-of-flight mass spectrometer. The mass spectra show cluster compositions which are qualitatively similar to that of the sam...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2002-10, Vol.106 (40), p.9204-9208 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An icosahedral Al−Pd−Mn quasicrystal sample is laser vaporized to form metal clusters by gas aggregation. The clusters are subsequently laser ionized and mass analyzed in a time-of-flight mass spectrometer. The mass spectra show cluster compositions which are qualitatively similar to that of the sample. This is consistent with a kinetically controlled cluster growth process. Cluster thermodynamic stability is probed by multiphoton ionization/fragmentation, which induces primarily Al and Mn loss. The resulting spectra are composed of a series of Pd-rich Al−Pd clusters. The average cluster composition is 60 (±1)% Pd. This composition is close to a known eutectic in the Al−Pd system. When manganese is seen on these clusters, it is always in units of Mn3. These results are discussed in terms of relative binding strengths in the Al−Pd−Mn alloy system. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp025662k |