Loading…

On the Interaction of Dihydrogen with Aromatic Systems

Second-order Møller−Plesset (MP2) calculations (using the approximate resolution of the identity, RI-MP2) in the TZVPP basis are performed to study the interaction of molecular hydrogen with the aromatic systems C6H5X (X = H, F, OH, NH2, CH3, and CN), C10H8 (naphthalene and azulene), C14H10 (anthrac...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2004-04, Vol.108 (15), p.3019-3023
Main Authors: Hübner, Olaf, Glöss, Andreas, Fichtner, Maximilian, Klopper, Wim
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a297t-c8a471387595af7ead1781b5eafd6834d2ce4d204593ea92556dc843cddacb393
cites cdi_FETCH-LOGICAL-a297t-c8a471387595af7ead1781b5eafd6834d2ce4d204593ea92556dc843cddacb393
container_end_page 3023
container_issue 15
container_start_page 3019
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 108
creator Hübner, Olaf
Glöss, Andreas
Fichtner, Maximilian
Klopper, Wim
description Second-order Møller−Plesset (MP2) calculations (using the approximate resolution of the identity, RI-MP2) in the TZVPP basis are performed to study the interaction of molecular hydrogen with the aromatic systems C6H5X (X = H, F, OH, NH2, CH3, and CN), C10H8 (naphthalene and azulene), C14H10 (anthracene), C24H12 (coronene), p-C6H4(COOH)2 (terephthalic acid), and p-C6H4(COOLi)2 (dilithium terephthalate). Various adsorption positions are studied for C6H5F. The most favorable configuration places H2 above the aromatic plane with its axis pointing toward the middle of the ring. The electronic (van der Waals) interaction energy for the differently substituted benzenes correlates with the ability of the substituents to enrich the aromatic system electronically. The largest interaction energy (among the singly substituted benzenes) is found for aniline (4.5 kJ mol-1). Enlarging the aromatic system increases the interaction energy; the value for coronene amounts to 5.4 kJ mol-1. Extending the basis set and including terms linear in the interelectronic distances increases the interaction energy by about 1 kJ mol-1 relative to that of the TZVPP basis, whereas the inclusion of higher excitations by coupled-cluster calculations (including all single and double excitations with a perturbative estimate of triples, CCSD(T)) decreases the interaction energy by about the same amount.
doi_str_mv 10.1021/jp031102p
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp031102p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_68V64621_H</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-c8a471387595af7ead1781b5eafd6834d2ce4d204593ea92556dc843cddacb393</originalsourceid><addsrcrecordid>eNptj7tOAzEQRS0EEiFQ8AduKCgW_Fi_yii8IkUKUgKtNbG9ZAPZjWwjyN9jFJSKZuYWZ67mIHRJyQ0ljN6ut4TTkrZHaEAFI5VgVByXTLSphOTmFJ2ltCaEUM7qAZKzDudVwJMuhwgut32H-wbftaudj_1b6PBXm1d4FPsN5Nbh-S7lsEnn6KSBjxQu_vYQvTzcL8ZP1XT2OBmPphUwo3LlNNSKcq2EEdCoAJ4qTZciQOOl5rVnLpRBamF4AMOEkN7pmjvvwS254UN0ve91sU8phsZuY7uBuLOU2F9hexAubLVn2_Li9wGE-G6l4krYxfPcSv0qa1nungp_tefBJbvuP2NXTP7p_QGqy2Lf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Interaction of Dihydrogen with Aromatic Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hübner, Olaf ; Glöss, Andreas ; Fichtner, Maximilian ; Klopper, Wim</creator><creatorcontrib>Hübner, Olaf ; Glöss, Andreas ; Fichtner, Maximilian ; Klopper, Wim</creatorcontrib><description>Second-order Møller−Plesset (MP2) calculations (using the approximate resolution of the identity, RI-MP2) in the TZVPP basis are performed to study the interaction of molecular hydrogen with the aromatic systems C6H5X (X = H, F, OH, NH2, CH3, and CN), C10H8 (naphthalene and azulene), C14H10 (anthracene), C24H12 (coronene), p-C6H4(COOH)2 (terephthalic acid), and p-C6H4(COOLi)2 (dilithium terephthalate). Various adsorption positions are studied for C6H5F. The most favorable configuration places H2 above the aromatic plane with its axis pointing toward the middle of the ring. The electronic (van der Waals) interaction energy for the differently substituted benzenes correlates with the ability of the substituents to enrich the aromatic system electronically. The largest interaction energy (among the singly substituted benzenes) is found for aniline (4.5 kJ mol-1). Enlarging the aromatic system increases the interaction energy; the value for coronene amounts to 5.4 kJ mol-1. Extending the basis set and including terms linear in the interelectronic distances increases the interaction energy by about 1 kJ mol-1 relative to that of the TZVPP basis, whereas the inclusion of higher excitations by coupled-cluster calculations (including all single and double excitations with a perturbative estimate of triples, CCSD(T)) decreases the interaction energy by about the same amount.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp031102p</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2004-04, Vol.108 (15), p.3019-3023</ispartof><rights>Copyright © 2004 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a297t-c8a471387595af7ead1781b5eafd6834d2ce4d204593ea92556dc843cddacb393</citedby><cites>FETCH-LOGICAL-a297t-c8a471387595af7ead1781b5eafd6834d2ce4d204593ea92556dc843cddacb393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Hübner, Olaf</creatorcontrib><creatorcontrib>Glöss, Andreas</creatorcontrib><creatorcontrib>Fichtner, Maximilian</creatorcontrib><creatorcontrib>Klopper, Wim</creatorcontrib><title>On the Interaction of Dihydrogen with Aromatic Systems</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Second-order Møller−Plesset (MP2) calculations (using the approximate resolution of the identity, RI-MP2) in the TZVPP basis are performed to study the interaction of molecular hydrogen with the aromatic systems C6H5X (X = H, F, OH, NH2, CH3, and CN), C10H8 (naphthalene and azulene), C14H10 (anthracene), C24H12 (coronene), p-C6H4(COOH)2 (terephthalic acid), and p-C6H4(COOLi)2 (dilithium terephthalate). Various adsorption positions are studied for C6H5F. The most favorable configuration places H2 above the aromatic plane with its axis pointing toward the middle of the ring. The electronic (van der Waals) interaction energy for the differently substituted benzenes correlates with the ability of the substituents to enrich the aromatic system electronically. The largest interaction energy (among the singly substituted benzenes) is found for aniline (4.5 kJ mol-1). Enlarging the aromatic system increases the interaction energy; the value for coronene amounts to 5.4 kJ mol-1. Extending the basis set and including terms linear in the interelectronic distances increases the interaction energy by about 1 kJ mol-1 relative to that of the TZVPP basis, whereas the inclusion of higher excitations by coupled-cluster calculations (including all single and double excitations with a perturbative estimate of triples, CCSD(T)) decreases the interaction energy by about the same amount.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptj7tOAzEQRS0EEiFQ8AduKCgW_Fi_yii8IkUKUgKtNbG9ZAPZjWwjyN9jFJSKZuYWZ67mIHRJyQ0ljN6ut4TTkrZHaEAFI5VgVByXTLSphOTmFJ2ltCaEUM7qAZKzDudVwJMuhwgut32H-wbftaudj_1b6PBXm1d4FPsN5Nbh-S7lsEnn6KSBjxQu_vYQvTzcL8ZP1XT2OBmPphUwo3LlNNSKcq2EEdCoAJ4qTZciQOOl5rVnLpRBamF4AMOEkN7pmjvvwS254UN0ve91sU8phsZuY7uBuLOU2F9hexAubLVn2_Li9wGE-G6l4krYxfPcSv0qa1nungp_tefBJbvuP2NXTP7p_QGqy2Lf</recordid><startdate>20040415</startdate><enddate>20040415</enddate><creator>Hübner, Olaf</creator><creator>Glöss, Andreas</creator><creator>Fichtner, Maximilian</creator><creator>Klopper, Wim</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040415</creationdate><title>On the Interaction of Dihydrogen with Aromatic Systems</title><author>Hübner, Olaf ; Glöss, Andreas ; Fichtner, Maximilian ; Klopper, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-c8a471387595af7ead1781b5eafd6834d2ce4d204593ea92556dc843cddacb393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hübner, Olaf</creatorcontrib><creatorcontrib>Glöss, Andreas</creatorcontrib><creatorcontrib>Fichtner, Maximilian</creatorcontrib><creatorcontrib>Klopper, Wim</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hübner, Olaf</au><au>Glöss, Andreas</au><au>Fichtner, Maximilian</au><au>Klopper, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Interaction of Dihydrogen with Aromatic Systems</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2004-04-15</date><risdate>2004</risdate><volume>108</volume><issue>15</issue><spage>3019</spage><epage>3023</epage><pages>3019-3023</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Second-order Møller−Plesset (MP2) calculations (using the approximate resolution of the identity, RI-MP2) in the TZVPP basis are performed to study the interaction of molecular hydrogen with the aromatic systems C6H5X (X = H, F, OH, NH2, CH3, and CN), C10H8 (naphthalene and azulene), C14H10 (anthracene), C24H12 (coronene), p-C6H4(COOH)2 (terephthalic acid), and p-C6H4(COOLi)2 (dilithium terephthalate). Various adsorption positions are studied for C6H5F. The most favorable configuration places H2 above the aromatic plane with its axis pointing toward the middle of the ring. The electronic (van der Waals) interaction energy for the differently substituted benzenes correlates with the ability of the substituents to enrich the aromatic system electronically. The largest interaction energy (among the singly substituted benzenes) is found for aniline (4.5 kJ mol-1). Enlarging the aromatic system increases the interaction energy; the value for coronene amounts to 5.4 kJ mol-1. Extending the basis set and including terms linear in the interelectronic distances increases the interaction energy by about 1 kJ mol-1 relative to that of the TZVPP basis, whereas the inclusion of higher excitations by coupled-cluster calculations (including all single and double excitations with a perturbative estimate of triples, CCSD(T)) decreases the interaction energy by about the same amount.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp031102p</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2004-04, Vol.108 (15), p.3019-3023
issn 1089-5639
1520-5215
language eng
recordid cdi_crossref_primary_10_1021_jp031102p
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title On the Interaction of Dihydrogen with Aromatic Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Interaction%20of%20Dihydrogen%20with%20Aromatic%20Systems&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=H%C3%BCbner,%20Olaf&rft.date=2004-04-15&rft.volume=108&rft.issue=15&rft.spage=3019&rft.epage=3023&rft.pages=3019-3023&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp031102p&rft_dat=%3Cistex_cross%3Eark_67375_TPS_68V64621_H%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a297t-c8a471387595af7ead1781b5eafd6834d2ce4d204593ea92556dc843cddacb393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true