Loading…

Electron Channels in Biomolecular Nanowires

We report a first-principle study of the electronic and conduction properties of a quadruple-helix guanine wire (G4 wire), a DNA derivative, with inner potassium ions. The analysis of the electronic structure highlights the presence of energy manifolds that are equivalent to the bands of (semi)condu...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2004-02, Vol.108 (8), p.2509-2515
Main Authors: Calzolari, Arrigo, Di Felice, Rosa, Molinari, Elisa, Garbesi, Anna
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-c6f1bf08ec231c549d7457335a673938800c0246385712f4047846fb0d6c6a343
cites cdi_FETCH-LOGICAL-a330t-c6f1bf08ec231c549d7457335a673938800c0246385712f4047846fb0d6c6a343
container_end_page 2515
container_issue 8
container_start_page 2509
container_title The journal of physical chemistry. B
container_volume 108
creator Calzolari, Arrigo
Di Felice, Rosa
Molinari, Elisa
Garbesi, Anna
description We report a first-principle study of the electronic and conduction properties of a quadruple-helix guanine wire (G4 wire), a DNA derivative, with inner potassium ions. The analysis of the electronic structure highlights the presence of energy manifolds that are equivalent to the bands of (semi)conducting materials and reveals the formation of extended electron channels available for charge transport along the wire. The specific metal−nucleobase interactions affect the electronic properties at the Fermi level, leading the wire to behave as an intrinsically p-doped system.
doi_str_mv 10.1021/jp036689m
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp036689m</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_ZPW54GNM_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-c6f1bf08ec231c549d7457335a673938800c0246385712f4047846fb0d6c6a343</originalsourceid><addsrcrecordid>eNptj01LAzEQhoMoWKsH_8FePIisTr6zR11qFWotWBG8hDTN4q77UZIt6r83sqUnD8MMvA_v8CB0juEaA8E31QaoECprDtAIcwJpHHm4uwUGcYxOQqgACCdKjNDVpHa2912b5B-mbV0dkrJN7squ6WKwrY1P5qbtvkrvwik6Kkwd3Nluj9Hr_WSZP6Sz5-ljfjtLDaXQp1YUeFWAcpZQbDnL1pJxSSk3QtKMKgVggTBBFZeYFAyYVEwUK1gLKwxldIwuh17ruxC8K_TGl43xPxqD_rPUe8vIpgNbht5970HjP3X8JrleLl70--KNs-n8SePIXwy8sUFX3da30eSf3l_m5V23</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron Channels in Biomolecular Nanowires</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Calzolari, Arrigo ; Di Felice, Rosa ; Molinari, Elisa ; Garbesi, Anna</creator><creatorcontrib>Calzolari, Arrigo ; Di Felice, Rosa ; Molinari, Elisa ; Garbesi, Anna</creatorcontrib><description>We report a first-principle study of the electronic and conduction properties of a quadruple-helix guanine wire (G4 wire), a DNA derivative, with inner potassium ions. The analysis of the electronic structure highlights the presence of energy manifolds that are equivalent to the bands of (semi)conducting materials and reveals the formation of extended electron channels available for charge transport along the wire. The specific metal−nucleobase interactions affect the electronic properties at the Fermi level, leading the wire to behave as an intrinsically p-doped system.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp036689m</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2004-02, Vol.108 (8), p.2509-2515</ispartof><rights>Copyright © 2004 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-c6f1bf08ec231c549d7457335a673938800c0246385712f4047846fb0d6c6a343</citedby><cites>FETCH-LOGICAL-a330t-c6f1bf08ec231c549d7457335a673938800c0246385712f4047846fb0d6c6a343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Calzolari, Arrigo</creatorcontrib><creatorcontrib>Di Felice, Rosa</creatorcontrib><creatorcontrib>Molinari, Elisa</creatorcontrib><creatorcontrib>Garbesi, Anna</creatorcontrib><title>Electron Channels in Biomolecular Nanowires</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We report a first-principle study of the electronic and conduction properties of a quadruple-helix guanine wire (G4 wire), a DNA derivative, with inner potassium ions. The analysis of the electronic structure highlights the presence of energy manifolds that are equivalent to the bands of (semi)conducting materials and reveals the formation of extended electron channels available for charge transport along the wire. The specific metal−nucleobase interactions affect the electronic properties at the Fermi level, leading the wire to behave as an intrinsically p-doped system.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptj01LAzEQhoMoWKsH_8FePIisTr6zR11qFWotWBG8hDTN4q77UZIt6r83sqUnD8MMvA_v8CB0juEaA8E31QaoECprDtAIcwJpHHm4uwUGcYxOQqgACCdKjNDVpHa2912b5B-mbV0dkrJN7squ6WKwrY1P5qbtvkrvwik6Kkwd3Nluj9Hr_WSZP6Sz5-ljfjtLDaXQp1YUeFWAcpZQbDnL1pJxSSk3QtKMKgVggTBBFZeYFAyYVEwUK1gLKwxldIwuh17ruxC8K_TGl43xPxqD_rPUe8vIpgNbht5970HjP3X8JrleLl70--KNs-n8SePIXwy8sUFX3da30eSf3l_m5V23</recordid><startdate>20040226</startdate><enddate>20040226</enddate><creator>Calzolari, Arrigo</creator><creator>Di Felice, Rosa</creator><creator>Molinari, Elisa</creator><creator>Garbesi, Anna</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040226</creationdate><title>Electron Channels in Biomolecular Nanowires</title><author>Calzolari, Arrigo ; Di Felice, Rosa ; Molinari, Elisa ; Garbesi, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-c6f1bf08ec231c549d7457335a673938800c0246385712f4047846fb0d6c6a343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calzolari, Arrigo</creatorcontrib><creatorcontrib>Di Felice, Rosa</creatorcontrib><creatorcontrib>Molinari, Elisa</creatorcontrib><creatorcontrib>Garbesi, Anna</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calzolari, Arrigo</au><au>Di Felice, Rosa</au><au>Molinari, Elisa</au><au>Garbesi, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Channels in Biomolecular Nanowires</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2004-02-26</date><risdate>2004</risdate><volume>108</volume><issue>8</issue><spage>2509</spage><epage>2515</epage><pages>2509-2515</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We report a first-principle study of the electronic and conduction properties of a quadruple-helix guanine wire (G4 wire), a DNA derivative, with inner potassium ions. The analysis of the electronic structure highlights the presence of energy manifolds that are equivalent to the bands of (semi)conducting materials and reveals the formation of extended electron channels available for charge transport along the wire. The specific metal−nucleobase interactions affect the electronic properties at the Fermi level, leading the wire to behave as an intrinsically p-doped system.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp036689m</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2004-02, Vol.108 (8), p.2509-2515
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp036689m
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Electron Channels in Biomolecular Nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Channels%20in%20Biomolecular%20Nanowires&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Calzolari,%20Arrigo&rft.date=2004-02-26&rft.volume=108&rft.issue=8&rft.spage=2509&rft.epage=2515&rft.pages=2509-2515&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp036689m&rft_dat=%3Cistex_cross%3Eark_67375_TPS_ZPW54GNM_1%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-c6f1bf08ec231c549d7457335a673938800c0246385712f4047846fb0d6c6a343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true