Loading…

Decomposition of Methane over a Ni−Cu−MgO Catalyst to Produce Hydrogen and Carbon Nanofibers

We have found that a Ni−Cu−MgO catalyst maintained its activity for the decomposition of methane at high levels for substantially long periods of time at 665−725 °C, being capable of generating large amounts of CO-free H2 and solid carbon. TEM examinations revealed that the solid carbon consisted ex...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2004-12, Vol.108 (52), p.20273-20277
Main Authors: Wang, Haiyou, Baker, R. Terry K
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have found that a Ni−Cu−MgO catalyst maintained its activity for the decomposition of methane at high levels for substantially long periods of time at 665−725 °C, being capable of generating large amounts of CO-free H2 and solid carbon. TEM examinations revealed that the solid carbon consisted exclusively of nanofibers possessing a “platelet” structure, in which the graphite layers are aligned in a direction perpendicular to the axis of the fiber. In sharp contrast, the Ni−MgO−methane system exhibited negligible activity at temperatures ≥650 °C. XRD and H2 chemisorption characterizations indicated that after reduction a Ni−Cu alloy was formed in the Ni−Cu−MgO catalyst and the surface of the particles was enriched in Cu0. A possible explanation for the observed superiority of the Ni−Cu−MgO catalyst over that of the Ni−MgO system is presented.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp040496x