Loading…

Three-Dimensional Self-Assembled Monolayer (3D SAM) of n-Alkanethiols on Copper Nanoclusters

Three-dimensional self-assembled monolayer (3D SAM) of 1-octanethiol, 1-decanethiol, and 1-dodecanethiol has been formed on copper nanoclusters. The morphology and spectroscopy of the nanoparticles were characterized while the conformation of the 3D SAMs was investigated with thermal and variable-te...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2004-07, Vol.108 (30), p.11001-11010
Main Authors: Ang, T. P, Wee, T. S. A, Chin, W. S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional self-assembled monolayer (3D SAM) of 1-octanethiol, 1-decanethiol, and 1-dodecanethiol has been formed on copper nanoclusters. The morphology and spectroscopy of the nanoparticles were characterized while the conformation of the 3D SAMs was investigated with thermal and variable-temperature analyses. TEM results suggest the copper clusters consist of a spherical shape of ∼3−5 nm. IR, XPS, and 13C CPMAS NMR results confirm that alkanethiols are chemisorbed via the −SH group and the packing density of the alkanethiols on copper nanoclusters increases with the alkyl chain lengths. The thiol chain is deduced to adopt the all-trans zigzag conformation through the analysis by IR and 13C CPMAS NMR. Low-angle peaks observed in XRD further suggest strong interdigitation among these chains to form superlattice structures. On increasing temperature, VT-FTIR and VT-13C CPMAS NMR depict the disruption of lateral interaction between the chains. This melting of crystalline packing is endothermic but an exothermic peak was observed upon reheating in DSC. We attribute this exothermic “crystallization” to the conformational memory effect of the compact chains. We have found that much higher melting points and enthalpies are obtained on copper nanoclusters as compared to earlier reports on gold and silver clusters.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp049006r