Loading…

Role of Donor−Acceptor Strengths and Separation on the Two-Photon Absorption Response of Cytotoxic Dyes:  A TD-DFT Study

Time-dependent density functional theory (TD-DFT) is applied to model one-photon (OPA) and two-photon (TPA) absorption spectra in a series of conjugated cytotoxic dyes. Good agreement with available experimental data is found for calculated excitation energies and cross sections. Calculations show t...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2005-08, Vol.109 (32), p.7276-7284
Main Authors: Badaeva, Ekaterina A, Timofeeva, Tatiana V, Masunov, Artëm, Tretiak, Sergei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time-dependent density functional theory (TD-DFT) is applied to model one-photon (OPA) and two-photon (TPA) absorption spectra in a series of conjugated cytotoxic dyes. Good agreement with available experimental data is found for calculated excitation energies and cross sections. Calculations show that both OPA and TPA spectra in the molecules studied are typically dominated by two strong peaks corresponding to different electronic states. We find that donor−acceptor strengths and conjugated bridge length have a strong impact on the cross-section magnitudes of low- and high-frequency TPA maxima, respectively. These trends are analyzed in terms of the natural transition orbitals of the corresponding electronic states. Observed structure−property relationships may have useful implications on design of organic conjugated chromophores with tunable two-photon absorption properties for photodynamic therapy applications.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp0521510