Loading…
In-Depth Study of the Influence of Host−Framework Flexibility on the Diffusion of Small Gas Molecules in One-Dimensional Zeolitic Pore Systems
Molecular-dynamics simulations are performed to understand the role of host−framework flexibility on the diffusion of methane molecules in the one-dimensional pores of AFI-, LTL-, and MTW-type zeolites. In particular, the impact of the choice of the host model is studied. Dynamically corrected Trans...
Saved in:
Published in: | Journal of physical chemistry. C 2007-11, Vol.111 (46), p.17370-17381 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molecular-dynamics simulations are performed to understand the role of host−framework flexibility on the diffusion of methane molecules in the one-dimensional pores of AFI-, LTL-, and MTW-type zeolites. In particular, the impact of the choice of the host model is studied. Dynamically corrected Transition State Theory is used to provide insights into the diffusion mechanism on a molecular level. Free-energy barriers and dynamical correction factors can change significantly by introducing lattice flexibility. In order to understand the phenomenon of free-energy barriers reduction, we investigate the motion of the window atoms. The influence that host−framework flexibility exerts on gas diffusion in zeolites is, generally, a complex function of material, host model, and loading such that transferability of conclusions from one zeolite to the other is not guaranteed. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp0746446 |