Loading…

Dip Pen Nanolithography of Conductive Silver Traces

We report the first demonstration of subμm, sub-50-μΩ·cm conductive traces directly written by Dip Pen Nanolithography (DPN). We achieved subμm Ag lines with 28.8 μΩ·cm average resistivity after direct-write printing from a silver nanoparticle-based ink suspension and annealing at 150 °C for 10 min....

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2010-06, Vol.114 (21), p.9672-9677
Main Authors: Hung, Sheng-Chun, Nafday, Omkar A, Haaheim, Jason R, Ren, Fan, Chi, G. C, Pearton, Stephen J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a325t-7ec9917fb563c66e73d6cafddf7ad2a4558347ae9c0e2982640d645fdb46a0103
cites cdi_FETCH-LOGICAL-a325t-7ec9917fb563c66e73d6cafddf7ad2a4558347ae9c0e2982640d645fdb46a0103
container_end_page 9677
container_issue 21
container_start_page 9672
container_title Journal of physical chemistry. C
container_volume 114
creator Hung, Sheng-Chun
Nafday, Omkar A
Haaheim, Jason R
Ren, Fan
Chi, G. C
Pearton, Stephen J
description We report the first demonstration of subμm, sub-50-μΩ·cm conductive traces directly written by Dip Pen Nanolithography (DPN). We achieved subμm Ag lines with 28.8 μΩ·cm average resistivity after direct-write printing from a silver nanoparticle-based ink suspension and annealing at 150 °C for 10 min. This compares to Ag bulk resistivity of 1.63 μΩ·cm, where the difference is within the range of previously reported variations in conductivity of Ag-based inks due to annealing conditions and larger width scales. We leveraged DPN’s ability to directly place materials at specific locations in order to fabricate and characterize these conductive silver (Ag) traces on electrode patterns and multiple substrates (SiO2, Kapton, mica). The low viscosity of the AgNP ink solution allowed write speeds up to 1600 μm/s, almost 4 orders of magnitude higher than typical thiol-on-gold DPN writing speeds. This direct-write methodology paves the way for site-specific deposition of metallic materials for use in applications such as circuit repair, sensor element functionalization, failure analysis, gas sensing, and printable electronics.
doi_str_mv 10.1021/jp101505k
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp101505k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c390603936</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-7ec9917fb563c66e73d6cafddf7ad2a4558347ae9c0e2982640d645fdb46a0103</originalsourceid><addsrcrecordid>eNptj81Kw0AYRQdRsFYXvkE2LlxEv_lvlhKtCkUF6zp8nR-bGDNhJi307Y1UunJ17-JwOZeQSwo3FBi9bXoKVIL8OiITWnCWayHl8aELfUrOUmoAJAfKJ4Tf13325rrsBbvQ1sM6fEbs17ss-KwMnd2Yod667L1uty5my4jGpXNy4rFN7uIvp-Rj_rAsn_LF6-NzebfIkTM55NqZoqDar6TiRimnuVUGvbVeo2U4es240OgKA44VM6YEWCWktyuhECjwKbne75oYUorOV32svzHuKgrV79vq8HZkr_YsmlQ1YRO70ewf7gcrB1LH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dip Pen Nanolithography of Conductive Silver Traces</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hung, Sheng-Chun ; Nafday, Omkar A ; Haaheim, Jason R ; Ren, Fan ; Chi, G. C ; Pearton, Stephen J</creator><creatorcontrib>Hung, Sheng-Chun ; Nafday, Omkar A ; Haaheim, Jason R ; Ren, Fan ; Chi, G. C ; Pearton, Stephen J</creatorcontrib><description>We report the first demonstration of subμm, sub-50-μΩ·cm conductive traces directly written by Dip Pen Nanolithography (DPN). We achieved subμm Ag lines with 28.8 μΩ·cm average resistivity after direct-write printing from a silver nanoparticle-based ink suspension and annealing at 150 °C for 10 min. This compares to Ag bulk resistivity of 1.63 μΩ·cm, where the difference is within the range of previously reported variations in conductivity of Ag-based inks due to annealing conditions and larger width scales. We leveraged DPN’s ability to directly place materials at specific locations in order to fabricate and characterize these conductive silver (Ag) traces on electrode patterns and multiple substrates (SiO2, Kapton, mica). The low viscosity of the AgNP ink solution allowed write speeds up to 1600 μm/s, almost 4 orders of magnitude higher than typical thiol-on-gold DPN writing speeds. This direct-write methodology paves the way for site-specific deposition of metallic materials for use in applications such as circuit repair, sensor element functionalization, failure analysis, gas sensing, and printable electronics.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp101505k</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Nanops and Nanostructures</subject><ispartof>Journal of physical chemistry. C, 2010-06, Vol.114 (21), p.9672-9677</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-7ec9917fb563c66e73d6cafddf7ad2a4558347ae9c0e2982640d645fdb46a0103</citedby><cites>FETCH-LOGICAL-a325t-7ec9917fb563c66e73d6cafddf7ad2a4558347ae9c0e2982640d645fdb46a0103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hung, Sheng-Chun</creatorcontrib><creatorcontrib>Nafday, Omkar A</creatorcontrib><creatorcontrib>Haaheim, Jason R</creatorcontrib><creatorcontrib>Ren, Fan</creatorcontrib><creatorcontrib>Chi, G. C</creatorcontrib><creatorcontrib>Pearton, Stephen J</creatorcontrib><title>Dip Pen Nanolithography of Conductive Silver Traces</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We report the first demonstration of subμm, sub-50-μΩ·cm conductive traces directly written by Dip Pen Nanolithography (DPN). We achieved subμm Ag lines with 28.8 μΩ·cm average resistivity after direct-write printing from a silver nanoparticle-based ink suspension and annealing at 150 °C for 10 min. This compares to Ag bulk resistivity of 1.63 μΩ·cm, where the difference is within the range of previously reported variations in conductivity of Ag-based inks due to annealing conditions and larger width scales. We leveraged DPN’s ability to directly place materials at specific locations in order to fabricate and characterize these conductive silver (Ag) traces on electrode patterns and multiple substrates (SiO2, Kapton, mica). The low viscosity of the AgNP ink solution allowed write speeds up to 1600 μm/s, almost 4 orders of magnitude higher than typical thiol-on-gold DPN writing speeds. This direct-write methodology paves the way for site-specific deposition of metallic materials for use in applications such as circuit repair, sensor element functionalization, failure analysis, gas sensing, and printable electronics.</description><subject>C: Nanops and Nanostructures</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptj81Kw0AYRQdRsFYXvkE2LlxEv_lvlhKtCkUF6zp8nR-bGDNhJi307Y1UunJ17-JwOZeQSwo3FBi9bXoKVIL8OiITWnCWayHl8aELfUrOUmoAJAfKJ4Tf13325rrsBbvQ1sM6fEbs17ss-KwMnd2Yod667L1uty5my4jGpXNy4rFN7uIvp-Rj_rAsn_LF6-NzebfIkTM55NqZoqDar6TiRimnuVUGvbVeo2U4es240OgKA44VM6YEWCWktyuhECjwKbne75oYUorOV32svzHuKgrV79vq8HZkr_YsmlQ1YRO70ewf7gcrB1LH</recordid><startdate>20100603</startdate><enddate>20100603</enddate><creator>Hung, Sheng-Chun</creator><creator>Nafday, Omkar A</creator><creator>Haaheim, Jason R</creator><creator>Ren, Fan</creator><creator>Chi, G. C</creator><creator>Pearton, Stephen J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100603</creationdate><title>Dip Pen Nanolithography of Conductive Silver Traces</title><author>Hung, Sheng-Chun ; Nafday, Omkar A ; Haaheim, Jason R ; Ren, Fan ; Chi, G. C ; Pearton, Stephen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-7ec9917fb563c66e73d6cafddf7ad2a4558347ae9c0e2982640d645fdb46a0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C: Nanops and Nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Sheng-Chun</creatorcontrib><creatorcontrib>Nafday, Omkar A</creatorcontrib><creatorcontrib>Haaheim, Jason R</creatorcontrib><creatorcontrib>Ren, Fan</creatorcontrib><creatorcontrib>Chi, G. C</creatorcontrib><creatorcontrib>Pearton, Stephen J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Sheng-Chun</au><au>Nafday, Omkar A</au><au>Haaheim, Jason R</au><au>Ren, Fan</au><au>Chi, G. C</au><au>Pearton, Stephen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dip Pen Nanolithography of Conductive Silver Traces</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-06-03</date><risdate>2010</risdate><volume>114</volume><issue>21</issue><spage>9672</spage><epage>9677</epage><pages>9672-9677</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We report the first demonstration of subμm, sub-50-μΩ·cm conductive traces directly written by Dip Pen Nanolithography (DPN). We achieved subμm Ag lines with 28.8 μΩ·cm average resistivity after direct-write printing from a silver nanoparticle-based ink suspension and annealing at 150 °C for 10 min. This compares to Ag bulk resistivity of 1.63 μΩ·cm, where the difference is within the range of previously reported variations in conductivity of Ag-based inks due to annealing conditions and larger width scales. We leveraged DPN’s ability to directly place materials at specific locations in order to fabricate and characterize these conductive silver (Ag) traces on electrode patterns and multiple substrates (SiO2, Kapton, mica). The low viscosity of the AgNP ink solution allowed write speeds up to 1600 μm/s, almost 4 orders of magnitude higher than typical thiol-on-gold DPN writing speeds. This direct-write methodology paves the way for site-specific deposition of metallic materials for use in applications such as circuit repair, sensor element functionalization, failure analysis, gas sensing, and printable electronics.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp101505k</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2010-06, Vol.114 (21), p.9672-9677
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp101505k
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Nanops and Nanostructures
title Dip Pen Nanolithography of Conductive Silver Traces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dip%20Pen%20Nanolithography%20of%20Conductive%20Silver%20Traces&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hung,%20Sheng-Chun&rft.date=2010-06-03&rft.volume=114&rft.issue=21&rft.spage=9672&rft.epage=9677&rft.pages=9672-9677&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp101505k&rft_dat=%3Cacs_cross%3Ec390603936%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a325t-7ec9917fb563c66e73d6cafddf7ad2a4558347ae9c0e2982640d645fdb46a0103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true