Loading…

DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy

Understanding changes in the properties of semiconductor materials after immobilization of biomolecules on the surface is essential for the fabrication of well-tuned and programmable devices. The work examines changes in the properties of gallium phosphide (GaP) after modification with an organic li...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2010-09, Vol.114 (36), p.15486-15490
Main Authors: Richards, David N, Zemlyanov, Dmitry Y, Asrar, Rafay M, Chokshi, Yena Y, Cook, Emily M, Hinton, Thomas J, Lu, Xinran, Nguyen, Viet Q, Patel, Neil K, Usher, Jonathan R, Vaidyanathan, Sriram, Yeung, David A, Ivanisevic, Albena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a325t-734a7b484fa790349dd0da43489698ae1c54c477d70f7b7f1f93274b3927233c3
cites cdi_FETCH-LOGICAL-a325t-734a7b484fa790349dd0da43489698ae1c54c477d70f7b7f1f93274b3927233c3
container_end_page 15490
container_issue 36
container_start_page 15486
container_title Journal of physical chemistry. C
container_volume 114
creator Richards, David N
Zemlyanov, Dmitry Y
Asrar, Rafay M
Chokshi, Yena Y
Cook, Emily M
Hinton, Thomas J
Lu, Xinran
Nguyen, Viet Q
Patel, Neil K
Usher, Jonathan R
Vaidyanathan, Sriram
Yeung, David A
Ivanisevic, Albena
description Understanding changes in the properties of semiconductor materials after immobilization of biomolecules on the surface is essential for the fabrication of well-tuned and programmable devices. The work examines changes in the properties of gallium phosphide (GaP) after modification with an organic linker, a single stranded DNA, and its complementary strand. We investigated changes in surface potential with Kelvin probe force microscopy (KPFM). Analysis revealed that a more ordered adlayer of ssDNA was present when a lower concentration of linker molecule was used. KPFM data combined with coverage data obtained from X-ray photoelectron spectroscopy (XPS) further confirmed this result. Successful hybridization with the complementary strand was confirmed by both KPFM and Raman spectroscopy. The results indicate that one can control the amount of DNA on the surface by changing the initial concentration of the organic linker, and thus modulate the surface potential of the semiconductor material.
doi_str_mv 10.1021/jp105927t
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp105927t</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a62297006</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-734a7b484fa790349dd0da43489698ae1c54c477d70f7b7f1f93274b3927233c3</originalsourceid><addsrcrecordid>eNptkMFLwzAUxoMoOKcH_4NcBHeoJk1imuOYbhar7qDnkqSJpLRNSeqg_vV2THYSHnzv8ON93_sAuMboDqMU39c9RkykfDgBMyxImnDK2Olxp_wcXMRYI8QIwmQGise3Jczb1ivXuB85ON_BaTZye4sRWsC825k4uC85mAqqEb6YZuc6uA1eGbj2QRv46nTwUft-vARnVjbRXP3pHHyunz5Wz0nxvslXyyKRJGVDwgmVXNGMWskFIlRUFaokJTQTDyKTBmtGNeW84shyxS22U3hOFZn-SgnRZA4Wh7t74xiMLfvgWhnGEqNyX0N5rGFibw6s1LGs_XfopmT_cL-OP1nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Richards, David N ; Zemlyanov, Dmitry Y ; Asrar, Rafay M ; Chokshi, Yena Y ; Cook, Emily M ; Hinton, Thomas J ; Lu, Xinran ; Nguyen, Viet Q ; Patel, Neil K ; Usher, Jonathan R ; Vaidyanathan, Sriram ; Yeung, David A ; Ivanisevic, Albena</creator><creatorcontrib>Richards, David N ; Zemlyanov, Dmitry Y ; Asrar, Rafay M ; Chokshi, Yena Y ; Cook, Emily M ; Hinton, Thomas J ; Lu, Xinran ; Nguyen, Viet Q ; Patel, Neil K ; Usher, Jonathan R ; Vaidyanathan, Sriram ; Yeung, David A ; Ivanisevic, Albena</creatorcontrib><description>Understanding changes in the properties of semiconductor materials after immobilization of biomolecules on the surface is essential for the fabrication of well-tuned and programmable devices. The work examines changes in the properties of gallium phosphide (GaP) after modification with an organic linker, a single stranded DNA, and its complementary strand. We investigated changes in surface potential with Kelvin probe force microscopy (KPFM). Analysis revealed that a more ordered adlayer of ssDNA was present when a lower concentration of linker molecule was used. KPFM data combined with coverage data obtained from X-ray photoelectron spectroscopy (XPS) further confirmed this result. Successful hybridization with the complementary strand was confirmed by both KPFM and Raman spectroscopy. The results indicate that one can control the amount of DNA on the surface by changing the initial concentration of the organic linker, and thus modulate the surface potential of the semiconductor material.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp105927t</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Catalysis</subject><ispartof>Journal of physical chemistry. C, 2010-09, Vol.114 (36), p.15486-15490</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-734a7b484fa790349dd0da43489698ae1c54c477d70f7b7f1f93274b3927233c3</citedby><cites>FETCH-LOGICAL-a325t-734a7b484fa790349dd0da43489698ae1c54c477d70f7b7f1f93274b3927233c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Richards, David N</creatorcontrib><creatorcontrib>Zemlyanov, Dmitry Y</creatorcontrib><creatorcontrib>Asrar, Rafay M</creatorcontrib><creatorcontrib>Chokshi, Yena Y</creatorcontrib><creatorcontrib>Cook, Emily M</creatorcontrib><creatorcontrib>Hinton, Thomas J</creatorcontrib><creatorcontrib>Lu, Xinran</creatorcontrib><creatorcontrib>Nguyen, Viet Q</creatorcontrib><creatorcontrib>Patel, Neil K</creatorcontrib><creatorcontrib>Usher, Jonathan R</creatorcontrib><creatorcontrib>Vaidyanathan, Sriram</creatorcontrib><creatorcontrib>Yeung, David A</creatorcontrib><creatorcontrib>Ivanisevic, Albena</creatorcontrib><title>DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Understanding changes in the properties of semiconductor materials after immobilization of biomolecules on the surface is essential for the fabrication of well-tuned and programmable devices. The work examines changes in the properties of gallium phosphide (GaP) after modification with an organic linker, a single stranded DNA, and its complementary strand. We investigated changes in surface potential with Kelvin probe force microscopy (KPFM). Analysis revealed that a more ordered adlayer of ssDNA was present when a lower concentration of linker molecule was used. KPFM data combined with coverage data obtained from X-ray photoelectron spectroscopy (XPS) further confirmed this result. Successful hybridization with the complementary strand was confirmed by both KPFM and Raman spectroscopy. The results indicate that one can control the amount of DNA on the surface by changing the initial concentration of the organic linker, and thus modulate the surface potential of the semiconductor material.</description><subject>C: Surfaces, Interfaces, Catalysis</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAUxoMoOKcH_4NcBHeoJk1imuOYbhar7qDnkqSJpLRNSeqg_vV2THYSHnzv8ON93_sAuMboDqMU39c9RkykfDgBMyxImnDK2Olxp_wcXMRYI8QIwmQGise3Jczb1ivXuB85ON_BaTZye4sRWsC825k4uC85mAqqEb6YZuc6uA1eGbj2QRv46nTwUft-vARnVjbRXP3pHHyunz5Wz0nxvslXyyKRJGVDwgmVXNGMWskFIlRUFaokJTQTDyKTBmtGNeW84shyxS22U3hOFZn-SgnRZA4Wh7t74xiMLfvgWhnGEqNyX0N5rGFibw6s1LGs_XfopmT_cL-OP1nA</recordid><startdate>20100916</startdate><enddate>20100916</enddate><creator>Richards, David N</creator><creator>Zemlyanov, Dmitry Y</creator><creator>Asrar, Rafay M</creator><creator>Chokshi, Yena Y</creator><creator>Cook, Emily M</creator><creator>Hinton, Thomas J</creator><creator>Lu, Xinran</creator><creator>Nguyen, Viet Q</creator><creator>Patel, Neil K</creator><creator>Usher, Jonathan R</creator><creator>Vaidyanathan, Sriram</creator><creator>Yeung, David A</creator><creator>Ivanisevic, Albena</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100916</creationdate><title>DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy</title><author>Richards, David N ; Zemlyanov, Dmitry Y ; Asrar, Rafay M ; Chokshi, Yena Y ; Cook, Emily M ; Hinton, Thomas J ; Lu, Xinran ; Nguyen, Viet Q ; Patel, Neil K ; Usher, Jonathan R ; Vaidyanathan, Sriram ; Yeung, David A ; Ivanisevic, Albena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-734a7b484fa790349dd0da43489698ae1c54c477d70f7b7f1f93274b3927233c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C: Surfaces, Interfaces, Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richards, David N</creatorcontrib><creatorcontrib>Zemlyanov, Dmitry Y</creatorcontrib><creatorcontrib>Asrar, Rafay M</creatorcontrib><creatorcontrib>Chokshi, Yena Y</creatorcontrib><creatorcontrib>Cook, Emily M</creatorcontrib><creatorcontrib>Hinton, Thomas J</creatorcontrib><creatorcontrib>Lu, Xinran</creatorcontrib><creatorcontrib>Nguyen, Viet Q</creatorcontrib><creatorcontrib>Patel, Neil K</creatorcontrib><creatorcontrib>Usher, Jonathan R</creatorcontrib><creatorcontrib>Vaidyanathan, Sriram</creatorcontrib><creatorcontrib>Yeung, David A</creatorcontrib><creatorcontrib>Ivanisevic, Albena</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richards, David N</au><au>Zemlyanov, Dmitry Y</au><au>Asrar, Rafay M</au><au>Chokshi, Yena Y</au><au>Cook, Emily M</au><au>Hinton, Thomas J</au><au>Lu, Xinran</au><au>Nguyen, Viet Q</au><au>Patel, Neil K</au><au>Usher, Jonathan R</au><au>Vaidyanathan, Sriram</au><au>Yeung, David A</au><au>Ivanisevic, Albena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-09-16</date><risdate>2010</risdate><volume>114</volume><issue>36</issue><spage>15486</spage><epage>15490</epage><pages>15486-15490</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Understanding changes in the properties of semiconductor materials after immobilization of biomolecules on the surface is essential for the fabrication of well-tuned and programmable devices. The work examines changes in the properties of gallium phosphide (GaP) after modification with an organic linker, a single stranded DNA, and its complementary strand. We investigated changes in surface potential with Kelvin probe force microscopy (KPFM). Analysis revealed that a more ordered adlayer of ssDNA was present when a lower concentration of linker molecule was used. KPFM data combined with coverage data obtained from X-ray photoelectron spectroscopy (XPS) further confirmed this result. Successful hybridization with the complementary strand was confirmed by both KPFM and Raman spectroscopy. The results indicate that one can control the amount of DNA on the surface by changing the initial concentration of the organic linker, and thus modulate the surface potential of the semiconductor material.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp105927t</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2010-09, Vol.114 (36), p.15486-15490
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp105927t
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Surfaces, Interfaces, Catalysis
title DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20Immobilization%20on%20GaP(100)%20Investigated%20by%20Kelvin%20Probe%20Force%20Microscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Richards,%20David%20N&rft.date=2010-09-16&rft.volume=114&rft.issue=36&rft.spage=15486&rft.epage=15490&rft.pages=15486-15490&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp105927t&rft_dat=%3Cacs_cross%3Ea62297006%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a325t-734a7b484fa790349dd0da43489698ae1c54c477d70f7b7f1f93274b3927233c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true