Loading…

Carbon Nanotube Wins the Competitive Binding over Proline-Rich Motif Ligand on SH3 Domain

The binding competition between a proline-rich motif (PRM) ligand and a hydrophobic nanoparticle, the single-wall carbon nanotube (SWCNT), at the binding pocket of SH3 domain, has been investigated by molecular dynamics simulations. It is found that the SWCNT has a very high probability of occupying...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2011-06, Vol.115 (25), p.12322-12328
Main Authors: Zuo, Guanghong, Gu, Wei, Fang, Haiping, Zhou, Ruhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The binding competition between a proline-rich motif (PRM) ligand and a hydrophobic nanoparticle, the single-wall carbon nanotube (SWCNT), at the binding pocket of SH3 domain, has been investigated by molecular dynamics simulations. It is found that the SWCNT has a very high probability of occupying the binding pocket of the SH3 domain, which prevents the PRM ligand from binding to the pocket. The binding free energy landscapes show that the SWCNT has ∼0.6 kcal/mol stronger binding affinity than the ligand in the three-way binding competition (SWCNT + ligand + protein). The potent binding affinity between the SWCNT and the SH3 domain is shown to be mainly from the π–π stacking interactions between the CNT and aromatic residues in the binding pocket. Our findings show that the existence of hydrophobic particles can greatly reduce the possibility of the regular binding of the ligand with the target protein, suggesting potential toxicity to proteins by hydrophobic nanoscale particles.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp2026303