Loading…

Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field

Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2012-06, Vol.116 (24), p.13079-13091
Main Authors: Cygan, Randall T, Romanov, Vyacheslav N, Myshakin, Evgeniy M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a382t-e301edd1df986e397d40c22c622640759b040b13dfed6a463bd76fe749c9ec653
cites cdi_FETCH-LOGICAL-a382t-e301edd1df986e397d40c22c622640759b040b13dfed6a463bd76fe749c9ec653
container_end_page 13091
container_issue 24
container_start_page 13079
container_title Journal of physical chemistry. C
container_volume 116
creator Cygan, Randall T
Romanov, Vyacheslav N
Myshakin, Evgeniy M
description Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, CO2. Recent experimental studies have demonstrated the efficacy of intercalating CO2 in the interlayer of layered clays, but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 and H2O in the interlayer of montmorillonite clay and to help validate the models with experimental observation. An accurate and fully flexible set of interatomic potentials for CO2 is developed and combined with Clayff potentials to help evaluate the intercalation mechanism and examine the effect of molecular flexibility on the diffusion rate of CO2 in water.
doi_str_mv 10.1021/jp3007574
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp3007574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b436279344</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-e301edd1df986e397d40c22c622640759b040b13dfed6a463bd76fe749c9ec653</originalsourceid><addsrcrecordid>eNptUD1PwzAQtRBIlMLAP_DCwBDwV5xkrAoFpFYM0Dly7Aty5dqVnUjtv8eoqCws996d3j3dO4RuKXmghNHHzY4TUpWVOEMT2nBWVKIsz09cVJfoKqUNISUnlE-QWwUHenQq4g-7zTjY4HHo8VzFLrMnG_bWQG53wxgBdwe8Cn7YhmidC94OgNfJ-i-sPJ5pPUaVJ8obvHCwt50DvAhR52rBmWt00SuX4OYXp2i9eP6cvxbL95e3-WxZKF6zoYB8GhhDTd_UEnhTGUE0Y1oyJkUO13REkI5y04ORSkjemUr2UIlGN6Blyafo_uirY0gpQt_uot2qeGgpaX_e1J7elLV3R-1OJa1cH5XXNp0WmMwyUtd_OqVTuwlj9DnBP37ffqdzrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Cygan, Randall T ; Romanov, Vyacheslav N ; Myshakin, Evgeniy M</creator><creatorcontrib>Cygan, Randall T ; Romanov, Vyacheslav N ; Myshakin, Evgeniy M</creatorcontrib><description>Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, CO2. Recent experimental studies have demonstrated the efficacy of intercalating CO2 in the interlayer of layered clays, but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 and H2O in the interlayer of montmorillonite clay and to help validate the models with experimental observation. An accurate and fully flexible set of interatomic potentials for CO2 is developed and combined with Clayff potentials to help evaluate the intercalation mechanism and examine the effect of molecular flexibility on the diffusion rate of CO2 in water.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp3007574</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Solid-gas interface ; Surface physical chemistry</subject><ispartof>Journal of physical chemistry. C, 2012-06, Vol.116 (24), p.13079-13091</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-e301edd1df986e397d40c22c622640759b040b13dfed6a463bd76fe749c9ec653</citedby><cites>FETCH-LOGICAL-a382t-e301edd1df986e397d40c22c622640759b040b13dfed6a463bd76fe749c9ec653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26075088$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cygan, Randall T</creatorcontrib><creatorcontrib>Romanov, Vyacheslav N</creatorcontrib><creatorcontrib>Myshakin, Evgeniy M</creatorcontrib><title>Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, CO2. Recent experimental studies have demonstrated the efficacy of intercalating CO2 in the interlayer of layered clays, but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 and H2O in the interlayer of montmorillonite clay and to help validate the models with experimental observation. An accurate and fully flexible set of interatomic potentials for CO2 is developed and combined with Clayff potentials to help evaluate the intercalation mechanism and examine the effect of molecular flexibility on the diffusion rate of CO2 in water.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Solid-gas interface</subject><subject>Surface physical chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptUD1PwzAQtRBIlMLAP_DCwBDwV5xkrAoFpFYM0Dly7Aty5dqVnUjtv8eoqCws996d3j3dO4RuKXmghNHHzY4TUpWVOEMT2nBWVKIsz09cVJfoKqUNISUnlE-QWwUHenQq4g-7zTjY4HHo8VzFLrMnG_bWQG53wxgBdwe8Cn7YhmidC94OgNfJ-i-sPJ5pPUaVJ8obvHCwt50DvAhR52rBmWt00SuX4OYXp2i9eP6cvxbL95e3-WxZKF6zoYB8GhhDTd_UEnhTGUE0Y1oyJkUO13REkI5y04ORSkjemUr2UIlGN6Blyafo_uirY0gpQt_uot2qeGgpaX_e1J7elLV3R-1OJa1cH5XXNp0WmMwyUtd_OqVTuwlj9DnBP37ffqdzrQ</recordid><startdate>20120621</startdate><enddate>20120621</enddate><creator>Cygan, Randall T</creator><creator>Romanov, Vyacheslav N</creator><creator>Myshakin, Evgeniy M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120621</creationdate><title>Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field</title><author>Cygan, Randall T ; Romanov, Vyacheslav N ; Myshakin, Evgeniy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-e301edd1df986e397d40c22c622640759b040b13dfed6a463bd76fe749c9ec653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Solid-gas interface</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cygan, Randall T</creatorcontrib><creatorcontrib>Romanov, Vyacheslav N</creatorcontrib><creatorcontrib>Myshakin, Evgeniy M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cygan, Randall T</au><au>Romanov, Vyacheslav N</au><au>Myshakin, Evgeniy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-06-21</date><risdate>2012</risdate><volume>116</volume><issue>24</issue><spage>13079</spage><epage>13091</epage><pages>13079-13091</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, CO2. Recent experimental studies have demonstrated the efficacy of intercalating CO2 in the interlayer of layered clays, but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 and H2O in the interlayer of montmorillonite clay and to help validate the models with experimental observation. An accurate and fully flexible set of interatomic potentials for CO2 is developed and combined with Clayff potentials to help evaluate the intercalation mechanism and examine the effect of molecular flexibility on the diffusion rate of CO2 in water.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp3007574</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-06, Vol.116 (24), p.13079-13091
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp3007574
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Solid-gas interface
Surface physical chemistry
title Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Simulation%20of%20Carbon%20Dioxide%20Capture%20by%20Montmorillonite%20Using%20an%20Accurate%20and%20Flexible%20Force%20Field&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Cygan,%20Randall%20T&rft.date=2012-06-21&rft.volume=116&rft.issue=24&rft.spage=13079&rft.epage=13091&rft.pages=13079-13091&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp3007574&rft_dat=%3Cacs_cross%3Eb436279344%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a382t-e301edd1df986e397d40c22c622640759b040b13dfed6a463bd76fe749c9ec653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true