Loading…

Ion Concentration Polarization in Polyelectrolyte-Modified Nanopores

Nanopores functionalized with synthetic or biological polyelectrolyte (PE) brushes have significant potentials to rectify ionic current and probe single biomacromolecules. In this work, electric-field-induced ion transport and the resulting conductance in a PE-modified nanopore are theoretically stu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2012-04, Vol.116 (15), p.8672-8677
Main Authors: Yeh, Li-Hsien, Zhang, Mingkan, Qian, Shizhi, Hsu, Jyh-Ping, Tseng, Shiojenn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanopores functionalized with synthetic or biological polyelectrolyte (PE) brushes have significant potentials to rectify ionic current and probe single biomacromolecules. In this work, electric-field-induced ion transport and the resulting conductance in a PE-modified nanopore are theoretically studied using a continuum-based model, composed of coupled Poisson–Nernst–Planck (PNP) equations for the ionic mass transport, and Stokes and Brinkman equations for the hydrodynamic fields in the exterior and interior of the PE layer, respectively. Because of the competition between the transport of counterions and co-ions in the nanopore, two distinct types of ion concentration polarization (CP) occur at either opening of the PE-modified nanopore. These distinct CP behaviors, which significantly affect the nanopore conductance, can be easily manipulated by adjusting the bulk salt concentration and the imposed potential bias. The induced CP in the PE-modified nanopore is more appreciable than that in the corresponding bare solid-state nanopore.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp301957j