Loading…
Hydrogen Storage in Yttrium-Decorated Single Walled Carbon Nanotube
Applying first principles electronic structure calculations and molecular dynamics (MD) simulations we have studied the structural stability, hydrogen adsorption capability and hydrogen desorption kinetics of Y-decorated single walled carbon nanotube (SWCNT). We have predicted that a single Y atom a...
Saved in:
Published in: | Journal of physical chemistry. C 2012-10, Vol.116 (42), p.22502-22508 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Applying first principles electronic structure calculations and molecular dynamics (MD) simulations we have studied the structural stability, hydrogen adsorption capability and hydrogen desorption kinetics of Y-decorated single walled carbon nanotube (SWCNT). We have predicted that a single Y atom attached on SWCNT can physisorb up to six hydrogen molecules which is not reported so far. Our MD simulations with four Y atoms placed at the alternate hexagons of SWCNT showed no clustering effect of Y atoms at room temperature and also we found that the system is stable even at higher temperature (700 K). For the first time we showed that 100% desorption at comparatively lower temperature can be achieved in a transition metal-decorated SWCNT system. Therefore the Y-decorated SWCNT has the potential to become a promising hydrogen storage device. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp3036296 |