Loading…
Structural Evolution of Gas-Phase Coinage Metal Clusters in Thiolate Self-Assembled Monolayers on Au
Metallization of organic surfaces is important especially for applications in molecular electronics. It can be realized by different means, one promising albeit less studied method being gas-phase deposition of metal clusters. Here, we report on the interactions of gas-phase Cu, Ag, and Au clusters...
Saved in:
Published in: | Journal of physical chemistry. C 2012-10, Vol.116 (42), p.22602-22607 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metallization of organic surfaces is important especially for applications in molecular electronics. It can be realized by different means, one promising albeit less studied method being gas-phase deposition of metal clusters. Here, we report on the interactions of gas-phase Cu, Ag, and Au clusters with n-dodecanethiolate self-assembled monolayers (SAMs) on Au substrate. The morphology and composition of the deposited clusters and their impact on the interface structure of the SAM/Au substrate were investigated using scanning tunneling microscopy. The chemical and physical interactions between the clusters and thiolates were characterized using X-ray photoelectron spectroscopy. The Au clusters are found to penetrate through the monolayer as a whole and partially retain their spherical geometry, whereas atom-by-atom diffusion and/or defect-mediated penetration are proposed for the Cu and Ag clusters. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp307148p |