Loading…
In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders
Copper(II) oxide nanopowders exhibit a high catalytic activity in CO oxidation at low temperatures. The combination of in situ XPS, XRD, and HRTEM methods was applied to investigate initial steps of CuO nanoparticles reduction, to identify oxygen and copper species and to revealed structural feature...
Saved in:
Published in: | Journal of physical chemistry. C 2013-07, Vol.117 (28), p.14588-14599 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a325t-bc531a22a80a0eb7ff7b8d5c6908ca40759389865a45213e0543f015363c07373 |
---|---|
cites | cdi_FETCH-LOGICAL-a325t-bc531a22a80a0eb7ff7b8d5c6908ca40759389865a45213e0543f015363c07373 |
container_end_page | 14599 |
container_issue | 28 |
container_start_page | 14588 |
container_title | Journal of physical chemistry. C |
container_volume | 117 |
creator | Svintsitskiy, Dmitry A Kardash, Tatyana Yu Stonkus, Olga A Slavinskaya, Elena M Stadnichenko, Andrey I Koscheev, Sergei V Chupakhin, Alexei P Boronin, Andrei I |
description | Copper(II) oxide nanopowders exhibit a high catalytic activity in CO oxidation at low temperatures. The combination of in situ XPS, XRD, and HRTEM methods was applied to investigate initial steps of CuO nanoparticles reduction, to identify oxygen and copper species and to revealed structural features in the dependence on reducing power of reaction medium. At the oxygen deficient surface of CuO nanopowders the metastable Cu4O3 oxide was formed under the mild reducing conditions −10–5 mbar CO or CO + O2 mixture with oxygen excess. Destruction of Cu4O3 structures in strong reducing medium (P(CO) ≥ 10–2 mbar) or under UHV conditions resulted in the formation of Cu2O which was epitaxially bounded with initial CuO particle. The reversible bulk reduction of CuO nanopowder to Cu2O at temperatures ∼150 °C can be explained by effortless propagation of Cu2O∥CuO epitaxial front inside the nanoparticle. The model of the surface restructuring along the {−111}CuO → {202}Cu4O3 → {111}Cu2O planes under the reduction of CuO nanopowders is proposed. The initial surface of CuO nanopowders is probably distorted and resembles Cu4O3-like structures that facilitates the CuO x ↔ Cu4O3 transition in mild reducing conditions. Such restructuring results in a unique electronic Cu4O3 structure with high oxygen deficiency and low-valence Cu1+ sites stimulating the formation of highly reactive CO and O2 adsorbed species. It was shown that the most active oxygen species on the surface of CuO x is stabilized as O–, which was previously reported in papers by Roberts and Madix in their study of the copper–oxygen systems. |
doi_str_mv | 10.1021/jp403339r |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp403339r</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b64646017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-bc531a22a80a0eb7ff7b8d5c6908ca40759389865a45213e0543f015363c07373</originalsourceid><addsrcrecordid>eNptkEFPwkAUhDdGExE9-A_exYMJ1bd9XbY9EkQhQUugJNyaZdvqEmzJbovy763BcPI0M8mXyWQYu-X4wNHnj5tdgEQU2TPW4RH5ngyEOD_5QF6yK-c2iIKQU4ctJyUsTN3Aav7Ug9Vs0YNk9NoDVWaQzOawqJvsAFUBY_P-sT3AQNdmn4MpYRhD_G0yVZuqDU0Mb6qsdtVXllt3zS4KtXX5zZ922fJ5lAzH3jR-mQwHU0-RL2pvrQVx5fsqRIX5WhaFXIeZ0P0IQ60ClCKiMAr7QgXC55SjCKhALqhPGiVJ6rL7Y6-2lXM2L9KdNZ_KHlKO6e8f6emPlr07skq7dFM1tmyX_cP9AH58WtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Svintsitskiy, Dmitry A ; Kardash, Tatyana Yu ; Stonkus, Olga A ; Slavinskaya, Elena M ; Stadnichenko, Andrey I ; Koscheev, Sergei V ; Chupakhin, Alexei P ; Boronin, Andrei I</creator><creatorcontrib>Svintsitskiy, Dmitry A ; Kardash, Tatyana Yu ; Stonkus, Olga A ; Slavinskaya, Elena M ; Stadnichenko, Andrey I ; Koscheev, Sergei V ; Chupakhin, Alexei P ; Boronin, Andrei I</creatorcontrib><description>Copper(II) oxide nanopowders exhibit a high catalytic activity in CO oxidation at low temperatures. The combination of in situ XPS, XRD, and HRTEM methods was applied to investigate initial steps of CuO nanoparticles reduction, to identify oxygen and copper species and to revealed structural features in the dependence on reducing power of reaction medium. At the oxygen deficient surface of CuO nanopowders the metastable Cu4O3 oxide was formed under the mild reducing conditions −10–5 mbar CO or CO + O2 mixture with oxygen excess. Destruction of Cu4O3 structures in strong reducing medium (P(CO) ≥ 10–2 mbar) or under UHV conditions resulted in the formation of Cu2O which was epitaxially bounded with initial CuO particle. The reversible bulk reduction of CuO nanopowder to Cu2O at temperatures ∼150 °C can be explained by effortless propagation of Cu2O∥CuO epitaxial front inside the nanoparticle. The model of the surface restructuring along the {−111}CuO → {202}Cu4O3 → {111}Cu2O planes under the reduction of CuO nanopowders is proposed. The initial surface of CuO nanopowders is probably distorted and resembles Cu4O3-like structures that facilitates the CuO x ↔ Cu4O3 transition in mild reducing conditions. Such restructuring results in a unique electronic Cu4O3 structure with high oxygen deficiency and low-valence Cu1+ sites stimulating the formation of highly reactive CO and O2 adsorbed species. It was shown that the most active oxygen species on the surface of CuO x is stabilized as O–, which was previously reported in papers by Roberts and Madix in their study of the copper–oxygen systems.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp403339r</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2013-07, Vol.117 (28), p.14588-14599</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-bc531a22a80a0eb7ff7b8d5c6908ca40759389865a45213e0543f015363c07373</citedby><cites>FETCH-LOGICAL-a325t-bc531a22a80a0eb7ff7b8d5c6908ca40759389865a45213e0543f015363c07373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Svintsitskiy, Dmitry A</creatorcontrib><creatorcontrib>Kardash, Tatyana Yu</creatorcontrib><creatorcontrib>Stonkus, Olga A</creatorcontrib><creatorcontrib>Slavinskaya, Elena M</creatorcontrib><creatorcontrib>Stadnichenko, Andrey I</creatorcontrib><creatorcontrib>Koscheev, Sergei V</creatorcontrib><creatorcontrib>Chupakhin, Alexei P</creatorcontrib><creatorcontrib>Boronin, Andrei I</creatorcontrib><title>In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Copper(II) oxide nanopowders exhibit a high catalytic activity in CO oxidation at low temperatures. The combination of in situ XPS, XRD, and HRTEM methods was applied to investigate initial steps of CuO nanoparticles reduction, to identify oxygen and copper species and to revealed structural features in the dependence on reducing power of reaction medium. At the oxygen deficient surface of CuO nanopowders the metastable Cu4O3 oxide was formed under the mild reducing conditions −10–5 mbar CO or CO + O2 mixture with oxygen excess. Destruction of Cu4O3 structures in strong reducing medium (P(CO) ≥ 10–2 mbar) or under UHV conditions resulted in the formation of Cu2O which was epitaxially bounded with initial CuO particle. The reversible bulk reduction of CuO nanopowder to Cu2O at temperatures ∼150 °C can be explained by effortless propagation of Cu2O∥CuO epitaxial front inside the nanoparticle. The model of the surface restructuring along the {−111}CuO → {202}Cu4O3 → {111}Cu2O planes under the reduction of CuO nanopowders is proposed. The initial surface of CuO nanopowders is probably distorted and resembles Cu4O3-like structures that facilitates the CuO x ↔ Cu4O3 transition in mild reducing conditions. Such restructuring results in a unique electronic Cu4O3 structure with high oxygen deficiency and low-valence Cu1+ sites stimulating the formation of highly reactive CO and O2 adsorbed species. It was shown that the most active oxygen species on the surface of CuO x is stabilized as O–, which was previously reported in papers by Roberts and Madix in their study of the copper–oxygen systems.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkEFPwkAUhDdGExE9-A_exYMJ1bd9XbY9EkQhQUugJNyaZdvqEmzJbovy763BcPI0M8mXyWQYu-X4wNHnj5tdgEQU2TPW4RH5ngyEOD_5QF6yK-c2iIKQU4ctJyUsTN3Aav7Ug9Vs0YNk9NoDVWaQzOawqJvsAFUBY_P-sT3AQNdmn4MpYRhD_G0yVZuqDU0Mb6qsdtVXllt3zS4KtXX5zZ922fJ5lAzH3jR-mQwHU0-RL2pvrQVx5fsqRIX5WhaFXIeZ0P0IQ60ClCKiMAr7QgXC55SjCKhALqhPGiVJ6rL7Y6-2lXM2L9KdNZ_KHlKO6e8f6emPlr07skq7dFM1tmyX_cP9AH58WtQ</recordid><startdate>20130718</startdate><enddate>20130718</enddate><creator>Svintsitskiy, Dmitry A</creator><creator>Kardash, Tatyana Yu</creator><creator>Stonkus, Olga A</creator><creator>Slavinskaya, Elena M</creator><creator>Stadnichenko, Andrey I</creator><creator>Koscheev, Sergei V</creator><creator>Chupakhin, Alexei P</creator><creator>Boronin, Andrei I</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130718</creationdate><title>In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders</title><author>Svintsitskiy, Dmitry A ; Kardash, Tatyana Yu ; Stonkus, Olga A ; Slavinskaya, Elena M ; Stadnichenko, Andrey I ; Koscheev, Sergei V ; Chupakhin, Alexei P ; Boronin, Andrei I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-bc531a22a80a0eb7ff7b8d5c6908ca40759389865a45213e0543f015363c07373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svintsitskiy, Dmitry A</creatorcontrib><creatorcontrib>Kardash, Tatyana Yu</creatorcontrib><creatorcontrib>Stonkus, Olga A</creatorcontrib><creatorcontrib>Slavinskaya, Elena M</creatorcontrib><creatorcontrib>Stadnichenko, Andrey I</creatorcontrib><creatorcontrib>Koscheev, Sergei V</creatorcontrib><creatorcontrib>Chupakhin, Alexei P</creatorcontrib><creatorcontrib>Boronin, Andrei I</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svintsitskiy, Dmitry A</au><au>Kardash, Tatyana Yu</au><au>Stonkus, Olga A</au><au>Slavinskaya, Elena M</au><au>Stadnichenko, Andrey I</au><au>Koscheev, Sergei V</au><au>Chupakhin, Alexei P</au><au>Boronin, Andrei I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-07-18</date><risdate>2013</risdate><volume>117</volume><issue>28</issue><spage>14588</spage><epage>14599</epage><pages>14588-14599</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Copper(II) oxide nanopowders exhibit a high catalytic activity in CO oxidation at low temperatures. The combination of in situ XPS, XRD, and HRTEM methods was applied to investigate initial steps of CuO nanoparticles reduction, to identify oxygen and copper species and to revealed structural features in the dependence on reducing power of reaction medium. At the oxygen deficient surface of CuO nanopowders the metastable Cu4O3 oxide was formed under the mild reducing conditions −10–5 mbar CO or CO + O2 mixture with oxygen excess. Destruction of Cu4O3 structures in strong reducing medium (P(CO) ≥ 10–2 mbar) or under UHV conditions resulted in the formation of Cu2O which was epitaxially bounded with initial CuO particle. The reversible bulk reduction of CuO nanopowder to Cu2O at temperatures ∼150 °C can be explained by effortless propagation of Cu2O∥CuO epitaxial front inside the nanoparticle. The model of the surface restructuring along the {−111}CuO → {202}Cu4O3 → {111}Cu2O planes under the reduction of CuO nanopowders is proposed. The initial surface of CuO nanopowders is probably distorted and resembles Cu4O3-like structures that facilitates the CuO x ↔ Cu4O3 transition in mild reducing conditions. Such restructuring results in a unique electronic Cu4O3 structure with high oxygen deficiency and low-valence Cu1+ sites stimulating the formation of highly reactive CO and O2 adsorbed species. It was shown that the most active oxygen species on the surface of CuO x is stabilized as O–, which was previously reported in papers by Roberts and Madix in their study of the copper–oxygen systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp403339r</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2013-07, Vol.117 (28), p.14588-14599 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp403339r |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20XRD,%20XPS,%20TEM,%20and%20TPR%20Study%20of%20Highly%20Active%20in%20CO%20Oxidation%20CuO%20Nanopowders&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Svintsitskiy,%20Dmitry%20A&rft.date=2013-07-18&rft.volume=117&rft.issue=28&rft.spage=14588&rft.epage=14599&rft.pages=14588-14599&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp403339r&rft_dat=%3Cacs_cross%3Eb64646017%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a325t-bc531a22a80a0eb7ff7b8d5c6908ca40759389865a45213e0543f015363c07373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |