Loading…

Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance

This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2013-06, Vol.117 (25), p.13153-13162
Main Authors: Kaneti, Yusuf V, Yue, Jeffrey, Jiang, Xuchuan, Yu, Aibing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3
cites cdi_FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3
container_end_page 13162
container_issue 25
container_start_page 13153
container_title Journal of physical chemistry. C
container_volume 117
creator Kaneti, Yusuf V
Yue, Jeffrey
Jiang, Xuchuan
Yu, Aibing
description This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temperature of 330 °C. The gas-sensing results further indicate that the chemisorbed oxygen species on the surfaces of the ZnO nanoflakes are dominated by O2– rather than O– ions at 330 °C. The molecular dynamics (MD) method was also employed to understand the underlying fundamentals through simulating the adsorption of different gas molecules onto various ZnO crystal surfaces, such as (101̅0), (112̅0), and (0001). The simulation results confirm the enhancing effect of the exposed (101̅0) surfaces toward n-butanol gas molecules because of their lower diffusion coefficient on (101̅0) compared to those on (112̅0) and (0001) surfaces. The findings will provide new physical insights into the adsorption behaviors of volatile reducing gases on various ZnO surfaces under different temperature and humidity conditions and will be useful for the design and construction of gas-sensing materials with specifically exposed surfaces.
doi_str_mv 10.1021/jp404329q
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp404329q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c565882453</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIlMKBP_AFiR4C61fdHFFVClIFSIULl8jxg6akdrCDoB_A3_FRpCoqF0472pkdzQ5CpwQuCFByuWw4cEbztz3UIzmjmeRC7O8wl4foKKUlgGBAWA_pcfBtDHWtytri-dq3C5uqhIPDz_4e3ykfXK1ebcIfVbvAk88mJGvwOQHy_QUD7ELEE79QXnfbqUp4bn2q_At-sLHjVhviGB04VSd78jv76Ol68ji-yWb309vx1SxTFHibUSKZcZCXTg6JAV3aocydFHRUGutYySjnygwtmJHhnEkmOmCIMUIKxpxmfTTY-uoYUorWFU2sViquCwLFpp1i106nPdtqG5W0ql3sglZpd0A7S-Bk9KdTOhXL8B5998E_fj_VDnDf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kaneti, Yusuf V ; Yue, Jeffrey ; Jiang, Xuchuan ; Yu, Aibing</creator><creatorcontrib>Kaneti, Yusuf V ; Yue, Jeffrey ; Jiang, Xuchuan ; Yu, Aibing</creatorcontrib><description>This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temperature of 330 °C. The gas-sensing results further indicate that the chemisorbed oxygen species on the surfaces of the ZnO nanoflakes are dominated by O2– rather than O– ions at 330 °C. The molecular dynamics (MD) method was also employed to understand the underlying fundamentals through simulating the adsorption of different gas molecules onto various ZnO crystal surfaces, such as (101̅0), (112̅0), and (0001). The simulation results confirm the enhancing effect of the exposed (101̅0) surfaces toward n-butanol gas molecules because of their lower diffusion coefficient on (101̅0) compared to those on (112̅0) and (0001) surfaces. The findings will provide new physical insights into the adsorption behaviors of volatile reducing gases on various ZnO surfaces under different temperature and humidity conditions and will be useful for the design and construction of gas-sensing materials with specifically exposed surfaces.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp404329q</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; General equipment and techniques ; Growth from solutions ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of nanofabrication ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><ispartof>Journal of physical chemistry. C, 2013-06, Vol.117 (25), p.13153-13162</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3</citedby><cites>FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27530418$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaneti, Yusuf V</creatorcontrib><creatorcontrib>Yue, Jeffrey</creatorcontrib><creatorcontrib>Jiang, Xuchuan</creatorcontrib><creatorcontrib>Yu, Aibing</creatorcontrib><title>Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temperature of 330 °C. The gas-sensing results further indicate that the chemisorbed oxygen species on the surfaces of the ZnO nanoflakes are dominated by O2– rather than O– ions at 330 °C. The molecular dynamics (MD) method was also employed to understand the underlying fundamentals through simulating the adsorption of different gas molecules onto various ZnO crystal surfaces, such as (101̅0), (112̅0), and (0001). The simulation results confirm the enhancing effect of the exposed (101̅0) surfaces toward n-butanol gas molecules because of their lower diffusion coefficient on (101̅0) compared to those on (112̅0) and (0001) surfaces. The findings will provide new physical insights into the adsorption behaviors of volatile reducing gases on various ZnO surfaces under different temperature and humidity conditions and will be useful for the design and construction of gas-sensing materials with specifically exposed surfaces.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Growth from solutions</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of nanofabrication</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptUMtOwzAQtBBIlMKBP_AFiR4C61fdHFFVClIFSIULl8jxg6akdrCDoB_A3_FRpCoqF0472pkdzQ5CpwQuCFByuWw4cEbztz3UIzmjmeRC7O8wl4foKKUlgGBAWA_pcfBtDHWtytri-dq3C5uqhIPDz_4e3ykfXK1ebcIfVbvAk88mJGvwOQHy_QUD7ELEE79QXnfbqUp4bn2q_At-sLHjVhviGB04VSd78jv76Ol68ji-yWb309vx1SxTFHibUSKZcZCXTg6JAV3aocydFHRUGutYySjnygwtmJHhnEkmOmCIMUIKxpxmfTTY-uoYUorWFU2sViquCwLFpp1i106nPdtqG5W0ql3sglZpd0A7S-Bk9KdTOhXL8B5998E_fj_VDnDf</recordid><startdate>20130627</startdate><enddate>20130627</enddate><creator>Kaneti, Yusuf V</creator><creator>Yue, Jeffrey</creator><creator>Jiang, Xuchuan</creator><creator>Yu, Aibing</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130627</creationdate><title>Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance</title><author>Kaneti, Yusuf V ; Yue, Jeffrey ; Jiang, Xuchuan ; Yu, Aibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Growth from solutions</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of nanofabrication</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaneti, Yusuf V</creatorcontrib><creatorcontrib>Yue, Jeffrey</creatorcontrib><creatorcontrib>Jiang, Xuchuan</creatorcontrib><creatorcontrib>Yu, Aibing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaneti, Yusuf V</au><au>Yue, Jeffrey</au><au>Jiang, Xuchuan</au><au>Yu, Aibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-06-27</date><risdate>2013</risdate><volume>117</volume><issue>25</issue><spage>13153</spage><epage>13162</epage><pages>13153-13162</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temperature of 330 °C. The gas-sensing results further indicate that the chemisorbed oxygen species on the surfaces of the ZnO nanoflakes are dominated by O2– rather than O– ions at 330 °C. The molecular dynamics (MD) method was also employed to understand the underlying fundamentals through simulating the adsorption of different gas molecules onto various ZnO crystal surfaces, such as (101̅0), (112̅0), and (0001). The simulation results confirm the enhancing effect of the exposed (101̅0) surfaces toward n-butanol gas molecules because of their lower diffusion coefficient on (101̅0) compared to those on (112̅0) and (0001) surfaces. The findings will provide new physical insights into the adsorption behaviors of volatile reducing gases on various ZnO surfaces under different temperature and humidity conditions and will be useful for the design and construction of gas-sensing materials with specifically exposed surfaces.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp404329q</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-06, Vol.117 (25), p.13153-13162
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp404329q
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
General equipment and techniques
Growth from solutions
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Materials science
Methods of crystal growth
physics of crystal growth
Methods of nanofabrication
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Physics
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
title Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20Synthesis%20of%20ZnO%20Nanoflakes%20with%20Exposed%20(101%CC%850)%20for%20Enhanced%20Gas%20Sensing%20Performance&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kaneti,%20Yusuf%20V&rft.date=2013-06-27&rft.volume=117&rft.issue=25&rft.spage=13153&rft.epage=13162&rft.pages=13153-13162&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp404329q&rft_dat=%3Cacs_cross%3Ec565882453%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true