Loading…
Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance
This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temp...
Saved in:
Published in: | Journal of physical chemistry. C 2013-06, Vol.117 (25), p.13153-13162 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3 |
container_end_page | 13162 |
container_issue | 25 |
container_start_page | 13153 |
container_title | Journal of physical chemistry. C |
container_volume | 117 |
creator | Kaneti, Yusuf V Yue, Jeffrey Jiang, Xuchuan Yu, Aibing |
description | This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temperature of 330 °C. The gas-sensing results further indicate that the chemisorbed oxygen species on the surfaces of the ZnO nanoflakes are dominated by O2– rather than O– ions at 330 °C. The molecular dynamics (MD) method was also employed to understand the underlying fundamentals through simulating the adsorption of different gas molecules onto various ZnO crystal surfaces, such as (101̅0), (112̅0), and (0001). The simulation results confirm the enhancing effect of the exposed (101̅0) surfaces toward n-butanol gas molecules because of their lower diffusion coefficient on (101̅0) compared to those on (112̅0) and (0001) surfaces. The findings will provide new physical insights into the adsorption behaviors of volatile reducing gases on various ZnO surfaces under different temperature and humidity conditions and will be useful for the design and construction of gas-sensing materials with specifically exposed surfaces. |
doi_str_mv | 10.1021/jp404329q |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp404329q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c565882453</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIlMKBP_AFiR4C61fdHFFVClIFSIULl8jxg6akdrCDoB_A3_FRpCoqF0472pkdzQ5CpwQuCFByuWw4cEbztz3UIzmjmeRC7O8wl4foKKUlgGBAWA_pcfBtDHWtytri-dq3C5uqhIPDz_4e3ykfXK1ebcIfVbvAk88mJGvwOQHy_QUD7ELEE79QXnfbqUp4bn2q_At-sLHjVhviGB04VSd78jv76Ol68ji-yWb309vx1SxTFHibUSKZcZCXTg6JAV3aocydFHRUGutYySjnygwtmJHhnEkmOmCIMUIKxpxmfTTY-uoYUorWFU2sViquCwLFpp1i106nPdtqG5W0ql3sglZpd0A7S-Bk9KdTOhXL8B5998E_fj_VDnDf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kaneti, Yusuf V ; Yue, Jeffrey ; Jiang, Xuchuan ; Yu, Aibing</creator><creatorcontrib>Kaneti, Yusuf V ; Yue, Jeffrey ; Jiang, Xuchuan ; Yu, Aibing</creatorcontrib><description>This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temperature of 330 °C. The gas-sensing results further indicate that the chemisorbed oxygen species on the surfaces of the ZnO nanoflakes are dominated by O2– rather than O– ions at 330 °C. The molecular dynamics (MD) method was also employed to understand the underlying fundamentals through simulating the adsorption of different gas molecules onto various ZnO crystal surfaces, such as (101̅0), (112̅0), and (0001). The simulation results confirm the enhancing effect of the exposed (101̅0) surfaces toward n-butanol gas molecules because of their lower diffusion coefficient on (101̅0) compared to those on (112̅0) and (0001) surfaces. The findings will provide new physical insights into the adsorption behaviors of volatile reducing gases on various ZnO surfaces under different temperature and humidity conditions and will be useful for the design and construction of gas-sensing materials with specifically exposed surfaces.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp404329q</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; General equipment and techniques ; Growth from solutions ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of nanofabrication ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physics ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><ispartof>Journal of physical chemistry. C, 2013-06, Vol.117 (25), p.13153-13162</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3</citedby><cites>FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27530418$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaneti, Yusuf V</creatorcontrib><creatorcontrib>Yue, Jeffrey</creatorcontrib><creatorcontrib>Jiang, Xuchuan</creatorcontrib><creatorcontrib>Yu, Aibing</creatorcontrib><title>Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temperature of 330 °C. The gas-sensing results further indicate that the chemisorbed oxygen species on the surfaces of the ZnO nanoflakes are dominated by O2– rather than O– ions at 330 °C. The molecular dynamics (MD) method was also employed to understand the underlying fundamentals through simulating the adsorption of different gas molecules onto various ZnO crystal surfaces, such as (101̅0), (112̅0), and (0001). The simulation results confirm the enhancing effect of the exposed (101̅0) surfaces toward n-butanol gas molecules because of their lower diffusion coefficient on (101̅0) compared to those on (112̅0) and (0001) surfaces. The findings will provide new physical insights into the adsorption behaviors of volatile reducing gases on various ZnO surfaces under different temperature and humidity conditions and will be useful for the design and construction of gas-sensing materials with specifically exposed surfaces.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Growth from solutions</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of nanofabrication</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptUMtOwzAQtBBIlMKBP_AFiR4C61fdHFFVClIFSIULl8jxg6akdrCDoB_A3_FRpCoqF0472pkdzQ5CpwQuCFByuWw4cEbztz3UIzmjmeRC7O8wl4foKKUlgGBAWA_pcfBtDHWtytri-dq3C5uqhIPDz_4e3ykfXK1ebcIfVbvAk88mJGvwOQHy_QUD7ELEE79QXnfbqUp4bn2q_At-sLHjVhviGB04VSd78jv76Ol68ji-yWb309vx1SxTFHibUSKZcZCXTg6JAV3aocydFHRUGutYySjnygwtmJHhnEkmOmCIMUIKxpxmfTTY-uoYUorWFU2sViquCwLFpp1i106nPdtqG5W0ql3sglZpd0A7S-Bk9KdTOhXL8B5998E_fj_VDnDf</recordid><startdate>20130627</startdate><enddate>20130627</enddate><creator>Kaneti, Yusuf V</creator><creator>Yue, Jeffrey</creator><creator>Jiang, Xuchuan</creator><creator>Yu, Aibing</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130627</creationdate><title>Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance</title><author>Kaneti, Yusuf V ; Yue, Jeffrey ; Jiang, Xuchuan ; Yu, Aibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Growth from solutions</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of nanofabrication</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaneti, Yusuf V</creatorcontrib><creatorcontrib>Yue, Jeffrey</creatorcontrib><creatorcontrib>Jiang, Xuchuan</creatorcontrib><creatorcontrib>Yu, Aibing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaneti, Yusuf V</au><au>Yue, Jeffrey</au><au>Jiang, Xuchuan</au><au>Yu, Aibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-06-27</date><risdate>2013</risdate><volume>117</volume><issue>25</issue><spage>13153</spage><epage>13162</epage><pages>13153-13162</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>This study reports a facile and efficient one-step hydrothermal method for the synthesis of zinc oxide (ZnO) nanoflakes with exposed ZnO(101̅0) surfaces. The as-prepared nanoflakes exhibit excellent sensitivity, selectivity, and stability toward volatile n-butanol gas at the optimized operating temperature of 330 °C. The gas-sensing results further indicate that the chemisorbed oxygen species on the surfaces of the ZnO nanoflakes are dominated by O2– rather than O– ions at 330 °C. The molecular dynamics (MD) method was also employed to understand the underlying fundamentals through simulating the adsorption of different gas molecules onto various ZnO crystal surfaces, such as (101̅0), (112̅0), and (0001). The simulation results confirm the enhancing effect of the exposed (101̅0) surfaces toward n-butanol gas molecules because of their lower diffusion coefficient on (101̅0) compared to those on (112̅0) and (0001) surfaces. The findings will provide new physical insights into the adsorption behaviors of volatile reducing gases on various ZnO surfaces under different temperature and humidity conditions and will be useful for the design and construction of gas-sensing materials with specifically exposed surfaces.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp404329q</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2013-06, Vol.117 (25), p.13153-13162 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp404329q |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology General equipment and techniques Growth from solutions Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials science Methods of crystal growth physics of crystal growth Methods of nanofabrication Nanoscale materials and structures: fabrication and characterization Other topics in nanoscale materials and structures Physics Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing |
title | Controllable Synthesis of ZnO Nanoflakes with Exposed (101̅0) for Enhanced Gas Sensing Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20Synthesis%20of%20ZnO%20Nanoflakes%20with%20Exposed%20(101%CC%850)%20for%20Enhanced%20Gas%20Sensing%20Performance&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kaneti,%20Yusuf%20V&rft.date=2013-06-27&rft.volume=117&rft.issue=25&rft.spage=13153&rft.epage=13162&rft.pages=13153-13162&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp404329q&rft_dat=%3Cacs_cross%3Ec565882453%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a204t-2173df09bf761d0cbe679f7528bdef3b3244ad6e0d8d443735d8dd1dd57533fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |