Loading…

Surface Tension Alteration on Calcite, Induced by Ion Substitution

The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2014-02, Vol.118 (6), p.3078-3087
Main Authors: Sakuma, H, Andersson, M. P, Bechgaard, K, Stipp, S. L. S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a325t-e9f1fdbe14ad2449d372e9c334033ef08df424d420f71747257c78ac3a84b3c33
cites cdi_FETCH-LOGICAL-a325t-e9f1fdbe14ad2449d372e9c334033ef08df424d420f71747257c78ac3a84b3c33
container_end_page 3087
container_issue 6
container_start_page 3078
container_title Journal of physical chemistry. C
container_volume 118
creator Sakuma, H
Andersson, M. P
Bechgaard, K
Stipp, S. L. S
description The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale, where particles are smaller than the smallest droplet? We investigated the energy required to exchange Mg2+ and SO4 2– from aqueous solution into calcite {10.4} surfaces using density functional theory. Mg2+ substitution for Ca2+ is favored but only when SO4 2– is also present and MgSO4 incorporates preferentially as ion pairs at solution–calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70°, converting a hydrophobic surface to a mixed wet surface or rendering a mixed wet surface hydrophilic. This increase in water wettability decreases affinity for organic compounds. An important outcome is that we can now explain why oil recovery from carbonate reservoirs is enhanced when both Mg2+ and SO4 2– are present in the pore water. Incorporation of MgSO4 into calcite, which is energetically favored, decreases surface tension and releases polar oil compounds.
doi_str_mv 10.1021/jp411151u
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp411151u</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h97932571</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-e9f1fdbe14ad2449d372e9c334033ef08df424d420f71747257c78ac3a84b3c33</originalsourceid><addsrcrecordid>eNptj0tLw0AUhQdRsFYX_oNsXAhG587cYZJlDT4CBRet6zCZByTEpMxj0X9vQqUr4cA9HD4u5xByD_QZKIOX_oAAICBdkBWUnOUShbg8e5TX5CaEnlLBKfAVed0l75S22d6OoZvGbDNE61Vc7KxKDbqL9imrR5O0NVl7zOo536U2xC6mhbslV04Nwd793TX5fn_bV5_59uujrjbbXHEmYm5LB860FlAZhlgaLpktNedIObeOFsYhQ4OMOgkSJRNSy0Jprgps-cytyePpr_ZTCN665uC7H-WPDdBmGd-cx8_sw4lVOjT9lPw4N_uH-wXqUlfl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Tension Alteration on Calcite, Induced by Ion Substitution</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Sakuma, H ; Andersson, M. P ; Bechgaard, K ; Stipp, S. L. S</creator><creatorcontrib>Sakuma, H ; Andersson, M. P ; Bechgaard, K ; Stipp, S. L. S</creatorcontrib><description>The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale, where particles are smaller than the smallest droplet? We investigated the energy required to exchange Mg2+ and SO4 2– from aqueous solution into calcite {10.4} surfaces using density functional theory. Mg2+ substitution for Ca2+ is favored but only when SO4 2– is also present and MgSO4 incorporates preferentially as ion pairs at solution–calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70°, converting a hydrophobic surface to a mixed wet surface or rendering a mixed wet surface hydrophilic. This increase in water wettability decreases affinity for organic compounds. An important outcome is that we can now explain why oil recovery from carbonate reservoirs is enhanced when both Mg2+ and SO4 2– are present in the pore water. Incorporation of MgSO4 into calcite, which is energetically favored, decreases surface tension and releases polar oil compounds.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp411151u</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2014-02, Vol.118 (6), p.3078-3087</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-e9f1fdbe14ad2449d372e9c334033ef08df424d420f71747257c78ac3a84b3c33</citedby><cites>FETCH-LOGICAL-a325t-e9f1fdbe14ad2449d372e9c334033ef08df424d420f71747257c78ac3a84b3c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sakuma, H</creatorcontrib><creatorcontrib>Andersson, M. P</creatorcontrib><creatorcontrib>Bechgaard, K</creatorcontrib><creatorcontrib>Stipp, S. L. S</creatorcontrib><title>Surface Tension Alteration on Calcite, Induced by Ion Substitution</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale, where particles are smaller than the smallest droplet? We investigated the energy required to exchange Mg2+ and SO4 2– from aqueous solution into calcite {10.4} surfaces using density functional theory. Mg2+ substitution for Ca2+ is favored but only when SO4 2– is also present and MgSO4 incorporates preferentially as ion pairs at solution–calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70°, converting a hydrophobic surface to a mixed wet surface or rendering a mixed wet surface hydrophilic. This increase in water wettability decreases affinity for organic compounds. An important outcome is that we can now explain why oil recovery from carbonate reservoirs is enhanced when both Mg2+ and SO4 2– are present in the pore water. Incorporation of MgSO4 into calcite, which is energetically favored, decreases surface tension and releases polar oil compounds.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptj0tLw0AUhQdRsFYX_oNsXAhG587cYZJlDT4CBRet6zCZByTEpMxj0X9vQqUr4cA9HD4u5xByD_QZKIOX_oAAICBdkBWUnOUShbg8e5TX5CaEnlLBKfAVed0l75S22d6OoZvGbDNE61Vc7KxKDbqL9imrR5O0NVl7zOo536U2xC6mhbslV04Nwd793TX5fn_bV5_59uujrjbbXHEmYm5LB860FlAZhlgaLpktNedIObeOFsYhQ4OMOgkSJRNSy0Jprgps-cytyePpr_ZTCN665uC7H-WPDdBmGd-cx8_sw4lVOjT9lPw4N_uH-wXqUlfl</recordid><startdate>20140213</startdate><enddate>20140213</enddate><creator>Sakuma, H</creator><creator>Andersson, M. P</creator><creator>Bechgaard, K</creator><creator>Stipp, S. L. S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140213</creationdate><title>Surface Tension Alteration on Calcite, Induced by Ion Substitution</title><author>Sakuma, H ; Andersson, M. P ; Bechgaard, K ; Stipp, S. L. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-e9f1fdbe14ad2449d372e9c334033ef08df424d420f71747257c78ac3a84b3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakuma, H</creatorcontrib><creatorcontrib>Andersson, M. P</creatorcontrib><creatorcontrib>Bechgaard, K</creatorcontrib><creatorcontrib>Stipp, S. L. S</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakuma, H</au><au>Andersson, M. P</au><au>Bechgaard, K</au><au>Stipp, S. L. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Tension Alteration on Calcite, Induced by Ion Substitution</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-02-13</date><risdate>2014</risdate><volume>118</volume><issue>6</issue><spage>3078</spage><epage>3087</epage><pages>3078-3087</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale, where particles are smaller than the smallest droplet? We investigated the energy required to exchange Mg2+ and SO4 2– from aqueous solution into calcite {10.4} surfaces using density functional theory. Mg2+ substitution for Ca2+ is favored but only when SO4 2– is also present and MgSO4 incorporates preferentially as ion pairs at solution–calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70°, converting a hydrophobic surface to a mixed wet surface or rendering a mixed wet surface hydrophilic. This increase in water wettability decreases affinity for organic compounds. An important outcome is that we can now explain why oil recovery from carbonate reservoirs is enhanced when both Mg2+ and SO4 2– are present in the pore water. Incorporation of MgSO4 into calcite, which is energetically favored, decreases surface tension and releases polar oil compounds.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp411151u</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-02, Vol.118 (6), p.3078-3087
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp411151u
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Surface Tension Alteration on Calcite, Induced by Ion Substitution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Tension%20Alteration%20on%20Calcite,%20Induced%20by%20Ion%20Substitution&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sakuma,%20H&rft.date=2014-02-13&rft.volume=118&rft.issue=6&rft.spage=3078&rft.epage=3087&rft.pages=3078-3087&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp411151u&rft_dat=%3Cacs_cross%3Eh97932571%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a325t-e9f1fdbe14ad2449d372e9c334033ef08df424d420f71747257c78ac3a84b3c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true