Loading…

Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage

Geological storage of CO2 (GCS), also referred to as carbon sequestration, is a critical component for decreasing anthropogenic CO2 atmospheric emissions. Stored CO2 will exist as a supercritical phase, most likely in deep, saline, sedimentary reservoirs. Research at the Center for Frontiers of Subs...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2014-07, Vol.118 (28), p.15103-15113
Main Authors: Altman, Susan J, Aminzadeh, Behdad, Balhoff, Matthew T, Bennett, Philip C, Bryant, Steven L, Cardenas, M. Bayani, Chaudhary, Kuldeep, Cygan, Randall T, Deng, Wen, Dewers, Thomas, DiCarlo, David A, Eichhubl, Peter, Hesse, Marc A, Huh, Chun, Matteo, Edward N, Mehmani, Yashar, Tenney, Craig M, Yoon, Hongkyu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a358t-12c9424a880dc7493f95b43f306b650a9dc629d4a4d21496aa565828a4e948373
cites cdi_FETCH-LOGICAL-a358t-12c9424a880dc7493f95b43f306b650a9dc629d4a4d21496aa565828a4e948373
container_end_page 15113
container_issue 28
container_start_page 15103
container_title Journal of physical chemistry. C
container_volume 118
creator Altman, Susan J
Aminzadeh, Behdad
Balhoff, Matthew T
Bennett, Philip C
Bryant, Steven L
Cardenas, M. Bayani
Chaudhary, Kuldeep
Cygan, Randall T
Deng, Wen
Dewers, Thomas
DiCarlo, David A
Eichhubl, Peter
Hesse, Marc A
Huh, Chun
Matteo, Edward N
Mehmani, Yashar
Tenney, Craig M
Yoon, Hongkyu
description Geological storage of CO2 (GCS), also referred to as carbon sequestration, is a critical component for decreasing anthropogenic CO2 atmospheric emissions. Stored CO2 will exist as a supercritical phase, most likely in deep, saline, sedimentary reservoirs. Research at the Center for Frontiers of Subsurface Energy Security (CFSES), a Department of Energy, Energy Frontier Research Center, provides insights into the storage process. The integration of pore-scale experiments, molecular dynamics simulations, and study of natural analogue sites has enabled understanding of the efficacy of capillary, solubility, and dissolution trapping of CO2 for GCS. Molecular dynamics simulations provide insight on relative wetting of supercritical CO2 and brine hydrophilic and hydrophobic basal surfaces of kaolinite. Column experiments of successive supercritical CO2/brine flooding with high-resolution X-ray computed tomography imaging show a greater than 10% difference of residual trapping of CO2 in hydrophobic media compared to hydrophilic media that trapped only 2% of the CO2. Simulation results suggest that injecting a slug of nanoparticle dispersion into the storage reservoir before starting CO2 injection could increase the overall efficiency of large-scale storage. We estimate that approximately 22% ± 17% of the initial CO2 emplaced into the Bravo Dome field site of New Mexico has dissolved into the underlying brine. The rate of CO2 dissolution may be considered limited over geological timescales. Field observations at the Little Grand Wash fault in Utah suggest that calcite precipitation results in shifts in preferential flow paths of the upward migrating CO2-saturated-brine. Results of hybrid pore-scale and pore network modeling based on Little Grand Wash fault observations demonstrate that inclusion of realistic pore configurations, flow and transport physics, and geochemistry are needed to enhance our fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging to match the Little Grand Wash fault observations.
doi_str_mv 10.1021/jp5006764
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp5006764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a372034384</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-12c9424a880dc7493f95b43f306b650a9dc629d4a4d21496aa565828a4e948373</originalsourceid><addsrcrecordid>eNptkD9PwzAUxC0EEqUw8A28MDAE_D_2iCJokYIYKHP0YjtpoiSu7DLk21Mo6sR0p9Pvnp4OoVtKHihh9LHfSUJUrsQZWlDDWZYLKc9PXuSX6CqlnhDJCeULVBZbP3YWBgyTw-vZxeDmCQ4RfvN2C1OXxoSbEHEZpjbb-DjilQ9DaH9LBcQ6TPhjHyK0_hpdNDAkf_OnS_T58rwp1ln5vnotnsoMuNT7jDJrBBOgNXE2F4Y3RtaCN5yoWkkCxlnFjBMgHKPCKACppGYahDdC85wv0f3xro0hpeibahe7EeJcUVL9zFCdZjiwd0cWbKr68BWnw2f_cN9glloa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Altman, Susan J ; Aminzadeh, Behdad ; Balhoff, Matthew T ; Bennett, Philip C ; Bryant, Steven L ; Cardenas, M. Bayani ; Chaudhary, Kuldeep ; Cygan, Randall T ; Deng, Wen ; Dewers, Thomas ; DiCarlo, David A ; Eichhubl, Peter ; Hesse, Marc A ; Huh, Chun ; Matteo, Edward N ; Mehmani, Yashar ; Tenney, Craig M ; Yoon, Hongkyu</creator><creatorcontrib>Altman, Susan J ; Aminzadeh, Behdad ; Balhoff, Matthew T ; Bennett, Philip C ; Bryant, Steven L ; Cardenas, M. Bayani ; Chaudhary, Kuldeep ; Cygan, Randall T ; Deng, Wen ; Dewers, Thomas ; DiCarlo, David A ; Eichhubl, Peter ; Hesse, Marc A ; Huh, Chun ; Matteo, Edward N ; Mehmani, Yashar ; Tenney, Craig M ; Yoon, Hongkyu</creatorcontrib><description>Geological storage of CO2 (GCS), also referred to as carbon sequestration, is a critical component for decreasing anthropogenic CO2 atmospheric emissions. Stored CO2 will exist as a supercritical phase, most likely in deep, saline, sedimentary reservoirs. Research at the Center for Frontiers of Subsurface Energy Security (CFSES), a Department of Energy, Energy Frontier Research Center, provides insights into the storage process. The integration of pore-scale experiments, molecular dynamics simulations, and study of natural analogue sites has enabled understanding of the efficacy of capillary, solubility, and dissolution trapping of CO2 for GCS. Molecular dynamics simulations provide insight on relative wetting of supercritical CO2 and brine hydrophilic and hydrophobic basal surfaces of kaolinite. Column experiments of successive supercritical CO2/brine flooding with high-resolution X-ray computed tomography imaging show a greater than 10% difference of residual trapping of CO2 in hydrophobic media compared to hydrophilic media that trapped only 2% of the CO2. Simulation results suggest that injecting a slug of nanoparticle dispersion into the storage reservoir before starting CO2 injection could increase the overall efficiency of large-scale storage. We estimate that approximately 22% ± 17% of the initial CO2 emplaced into the Bravo Dome field site of New Mexico has dissolved into the underlying brine. The rate of CO2 dissolution may be considered limited over geological timescales. Field observations at the Little Grand Wash fault in Utah suggest that calcite precipitation results in shifts in preferential flow paths of the upward migrating CO2-saturated-brine. Results of hybrid pore-scale and pore network modeling based on Little Grand Wash fault observations demonstrate that inclusion of realistic pore configurations, flow and transport physics, and geochemistry are needed to enhance our fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging to match the Little Grand Wash fault observations.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp5006764</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2014-07, Vol.118 (28), p.15103-15113</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a358t-12c9424a880dc7493f95b43f306b650a9dc629d4a4d21496aa565828a4e948373</citedby><cites>FETCH-LOGICAL-a358t-12c9424a880dc7493f95b43f306b650a9dc629d4a4d21496aa565828a4e948373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Altman, Susan J</creatorcontrib><creatorcontrib>Aminzadeh, Behdad</creatorcontrib><creatorcontrib>Balhoff, Matthew T</creatorcontrib><creatorcontrib>Bennett, Philip C</creatorcontrib><creatorcontrib>Bryant, Steven L</creatorcontrib><creatorcontrib>Cardenas, M. Bayani</creatorcontrib><creatorcontrib>Chaudhary, Kuldeep</creatorcontrib><creatorcontrib>Cygan, Randall T</creatorcontrib><creatorcontrib>Deng, Wen</creatorcontrib><creatorcontrib>Dewers, Thomas</creatorcontrib><creatorcontrib>DiCarlo, David A</creatorcontrib><creatorcontrib>Eichhubl, Peter</creatorcontrib><creatorcontrib>Hesse, Marc A</creatorcontrib><creatorcontrib>Huh, Chun</creatorcontrib><creatorcontrib>Matteo, Edward N</creatorcontrib><creatorcontrib>Mehmani, Yashar</creatorcontrib><creatorcontrib>Tenney, Craig M</creatorcontrib><creatorcontrib>Yoon, Hongkyu</creatorcontrib><title>Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Geological storage of CO2 (GCS), also referred to as carbon sequestration, is a critical component for decreasing anthropogenic CO2 atmospheric emissions. Stored CO2 will exist as a supercritical phase, most likely in deep, saline, sedimentary reservoirs. Research at the Center for Frontiers of Subsurface Energy Security (CFSES), a Department of Energy, Energy Frontier Research Center, provides insights into the storage process. The integration of pore-scale experiments, molecular dynamics simulations, and study of natural analogue sites has enabled understanding of the efficacy of capillary, solubility, and dissolution trapping of CO2 for GCS. Molecular dynamics simulations provide insight on relative wetting of supercritical CO2 and brine hydrophilic and hydrophobic basal surfaces of kaolinite. Column experiments of successive supercritical CO2/brine flooding with high-resolution X-ray computed tomography imaging show a greater than 10% difference of residual trapping of CO2 in hydrophobic media compared to hydrophilic media that trapped only 2% of the CO2. Simulation results suggest that injecting a slug of nanoparticle dispersion into the storage reservoir before starting CO2 injection could increase the overall efficiency of large-scale storage. We estimate that approximately 22% ± 17% of the initial CO2 emplaced into the Bravo Dome field site of New Mexico has dissolved into the underlying brine. The rate of CO2 dissolution may be considered limited over geological timescales. Field observations at the Little Grand Wash fault in Utah suggest that calcite precipitation results in shifts in preferential flow paths of the upward migrating CO2-saturated-brine. Results of hybrid pore-scale and pore network modeling based on Little Grand Wash fault observations demonstrate that inclusion of realistic pore configurations, flow and transport physics, and geochemistry are needed to enhance our fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging to match the Little Grand Wash fault observations.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNptkD9PwzAUxC0EEqUw8A28MDAE_D_2iCJokYIYKHP0YjtpoiSu7DLk21Mo6sR0p9Pvnp4OoVtKHihh9LHfSUJUrsQZWlDDWZYLKc9PXuSX6CqlnhDJCeULVBZbP3YWBgyTw-vZxeDmCQ4RfvN2C1OXxoSbEHEZpjbb-DjilQ9DaH9LBcQ6TPhjHyK0_hpdNDAkf_OnS_T58rwp1ln5vnotnsoMuNT7jDJrBBOgNXE2F4Y3RtaCN5yoWkkCxlnFjBMgHKPCKACppGYahDdC85wv0f3xro0hpeibahe7EeJcUVL9zFCdZjiwd0cWbKr68BWnw2f_cN9glloa</recordid><startdate>20140717</startdate><enddate>20140717</enddate><creator>Altman, Susan J</creator><creator>Aminzadeh, Behdad</creator><creator>Balhoff, Matthew T</creator><creator>Bennett, Philip C</creator><creator>Bryant, Steven L</creator><creator>Cardenas, M. Bayani</creator><creator>Chaudhary, Kuldeep</creator><creator>Cygan, Randall T</creator><creator>Deng, Wen</creator><creator>Dewers, Thomas</creator><creator>DiCarlo, David A</creator><creator>Eichhubl, Peter</creator><creator>Hesse, Marc A</creator><creator>Huh, Chun</creator><creator>Matteo, Edward N</creator><creator>Mehmani, Yashar</creator><creator>Tenney, Craig M</creator><creator>Yoon, Hongkyu</creator><general>American Chemical Society</general><scope>N~.</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140717</creationdate><title>Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage</title><author>Altman, Susan J ; Aminzadeh, Behdad ; Balhoff, Matthew T ; Bennett, Philip C ; Bryant, Steven L ; Cardenas, M. Bayani ; Chaudhary, Kuldeep ; Cygan, Randall T ; Deng, Wen ; Dewers, Thomas ; DiCarlo, David A ; Eichhubl, Peter ; Hesse, Marc A ; Huh, Chun ; Matteo, Edward N ; Mehmani, Yashar ; Tenney, Craig M ; Yoon, Hongkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-12c9424a880dc7493f95b43f306b650a9dc629d4a4d21496aa565828a4e948373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altman, Susan J</creatorcontrib><creatorcontrib>Aminzadeh, Behdad</creatorcontrib><creatorcontrib>Balhoff, Matthew T</creatorcontrib><creatorcontrib>Bennett, Philip C</creatorcontrib><creatorcontrib>Bryant, Steven L</creatorcontrib><creatorcontrib>Cardenas, M. Bayani</creatorcontrib><creatorcontrib>Chaudhary, Kuldeep</creatorcontrib><creatorcontrib>Cygan, Randall T</creatorcontrib><creatorcontrib>Deng, Wen</creatorcontrib><creatorcontrib>Dewers, Thomas</creatorcontrib><creatorcontrib>DiCarlo, David A</creatorcontrib><creatorcontrib>Eichhubl, Peter</creatorcontrib><creatorcontrib>Hesse, Marc A</creatorcontrib><creatorcontrib>Huh, Chun</creatorcontrib><creatorcontrib>Matteo, Edward N</creatorcontrib><creatorcontrib>Mehmani, Yashar</creatorcontrib><creatorcontrib>Tenney, Craig M</creatorcontrib><creatorcontrib>Yoon, Hongkyu</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altman, Susan J</au><au>Aminzadeh, Behdad</au><au>Balhoff, Matthew T</au><au>Bennett, Philip C</au><au>Bryant, Steven L</au><au>Cardenas, M. Bayani</au><au>Chaudhary, Kuldeep</au><au>Cygan, Randall T</au><au>Deng, Wen</au><au>Dewers, Thomas</au><au>DiCarlo, David A</au><au>Eichhubl, Peter</au><au>Hesse, Marc A</au><au>Huh, Chun</au><au>Matteo, Edward N</au><au>Mehmani, Yashar</au><au>Tenney, Craig M</au><au>Yoon, Hongkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-07-17</date><risdate>2014</risdate><volume>118</volume><issue>28</issue><spage>15103</spage><epage>15113</epage><pages>15103-15113</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Geological storage of CO2 (GCS), also referred to as carbon sequestration, is a critical component for decreasing anthropogenic CO2 atmospheric emissions. Stored CO2 will exist as a supercritical phase, most likely in deep, saline, sedimentary reservoirs. Research at the Center for Frontiers of Subsurface Energy Security (CFSES), a Department of Energy, Energy Frontier Research Center, provides insights into the storage process. The integration of pore-scale experiments, molecular dynamics simulations, and study of natural analogue sites has enabled understanding of the efficacy of capillary, solubility, and dissolution trapping of CO2 for GCS. Molecular dynamics simulations provide insight on relative wetting of supercritical CO2 and brine hydrophilic and hydrophobic basal surfaces of kaolinite. Column experiments of successive supercritical CO2/brine flooding with high-resolution X-ray computed tomography imaging show a greater than 10% difference of residual trapping of CO2 in hydrophobic media compared to hydrophilic media that trapped only 2% of the CO2. Simulation results suggest that injecting a slug of nanoparticle dispersion into the storage reservoir before starting CO2 injection could increase the overall efficiency of large-scale storage. We estimate that approximately 22% ± 17% of the initial CO2 emplaced into the Bravo Dome field site of New Mexico has dissolved into the underlying brine. The rate of CO2 dissolution may be considered limited over geological timescales. Field observations at the Little Grand Wash fault in Utah suggest that calcite precipitation results in shifts in preferential flow paths of the upward migrating CO2-saturated-brine. Results of hybrid pore-scale and pore network modeling based on Little Grand Wash fault observations demonstrate that inclusion of realistic pore configurations, flow and transport physics, and geochemistry are needed to enhance our fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging to match the Little Grand Wash fault observations.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp5006764</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-07, Vol.118 (28), p.15103-15113
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp5006764
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20and%20Hydrodynamic%20Mechanisms%20for%20Long-Term%20Geological%20Carbon%20Storage&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Altman,%20Susan%20J&rft.date=2014-07-17&rft.volume=118&rft.issue=28&rft.spage=15103&rft.epage=15113&rft.pages=15103-15113&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp5006764&rft_dat=%3Cacs_cross%3Ea372034384%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a358t-12c9424a880dc7493f95b43f306b650a9dc629d4a4d21496aa565828a4e948373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true