Loading…

Temperature Study of Structure and Dynamics of Methane in Carbon Nanotubes

Molecular dynamics simulations of methane molecules inside the (15,15) carbon nanotube (CNT) are performed for the temperature range from 173 to 293 K and pressures up to 700 bar. The structural and dynamic properties of 1-site and 5-site models of methane molecules are reported. The atomic model of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2014-06, Vol.118 (22), p.12010-12016
Main Authors: Bartuś, Katarzyna, Bródka, Aleksander
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a259t-d27a135485d37208ae2a84f75e9c038630fa3ef5c1749f98d03e264a9d59def03
cites cdi_FETCH-LOGICAL-a259t-d27a135485d37208ae2a84f75e9c038630fa3ef5c1749f98d03e264a9d59def03
container_end_page 12016
container_issue 22
container_start_page 12010
container_title Journal of physical chemistry. C
container_volume 118
creator Bartuś, Katarzyna
Bródka, Aleksander
description Molecular dynamics simulations of methane molecules inside the (15,15) carbon nanotube (CNT) are performed for the temperature range from 173 to 293 K and pressures up to 700 bar. The structural and dynamic properties of 1-site and 5-site models of methane molecules are reported. The atomic model of the molecules increases density of methane in the vicinity of the nanotube wall, and the decrease of temperature increases the molecular density. The 5-site molecules from the contact layer exhibit tripod orientation with respect to the CNT. The diffusion coefficients of molecular translations along the carbon nanotube and rotational motion increase with temperature, and both decrease with pressure. Temperature dependences of the coefficients are described by the Arrhenius equation. Relatively free rotations of the 5-site molecules reduce the activation energies of translational diffusion compared to the energies for the 1-site molecules. The CNT flexibility, introduced by the reactive empirical bond order potential for interactions between carbon atoms of the nanotube, has weak impact on diffusivity of methane molecules. However, motions of the CNT atoms increase slightly the activation energies of the translational diffusion and diminish the energies of the rotational diffusion for higher pressures.
doi_str_mv 10.1021/jp501959r
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp501959r</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d281439116</sourcerecordid><originalsourceid>FETCH-LOGICAL-a259t-d27a135485d37208ae2a84f75e9c038630fa3ef5c1749f98d03e264a9d59def03</originalsourceid><addsrcrecordid>eNptkDtPwzAUhS0EEqUw8A-8MDAE_GziEQXKQwUGyhzd2tciEXEiOxn670kp6sR0j-75dHR0CLnk7IYzwW-bXjNutIlHZMaNFFmutD4-aJWfkrOUGsa0ZFzOyMsa2x4jDGNE-jGMbks7P4k42t8XBEfvtwHa2qad84rDFwSkdaAlxE0X6BuEbhg3mM7JiYfvhBd_d04-lw_r8ilbvT8-l3erDIQ2Q-ZEDlxqVWgnc8EKQAGF8rlGY5ksFpJ5kOi15bky3hSOSRQLBcZp49AzOSfX-1wbu5Qi-qqPdQtxW3FW7UaoDiNM7NWeBZuqphtjmJr9w_0AXQ5bFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature Study of Structure and Dynamics of Methane in Carbon Nanotubes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Bartuś, Katarzyna ; Bródka, Aleksander</creator><creatorcontrib>Bartuś, Katarzyna ; Bródka, Aleksander</creatorcontrib><description>Molecular dynamics simulations of methane molecules inside the (15,15) carbon nanotube (CNT) are performed for the temperature range from 173 to 293 K and pressures up to 700 bar. The structural and dynamic properties of 1-site and 5-site models of methane molecules are reported. The atomic model of the molecules increases density of methane in the vicinity of the nanotube wall, and the decrease of temperature increases the molecular density. The 5-site molecules from the contact layer exhibit tripod orientation with respect to the CNT. The diffusion coefficients of molecular translations along the carbon nanotube and rotational motion increase with temperature, and both decrease with pressure. Temperature dependences of the coefficients are described by the Arrhenius equation. Relatively free rotations of the 5-site molecules reduce the activation energies of translational diffusion compared to the energies for the 1-site molecules. The CNT flexibility, introduced by the reactive empirical bond order potential for interactions between carbon atoms of the nanotube, has weak impact on diffusivity of methane molecules. However, motions of the CNT atoms increase slightly the activation energies of the translational diffusion and diminish the energies of the rotational diffusion for higher pressures.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp501959r</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2014-06, Vol.118 (22), p.12010-12016</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a259t-d27a135485d37208ae2a84f75e9c038630fa3ef5c1749f98d03e264a9d59def03</citedby><cites>FETCH-LOGICAL-a259t-d27a135485d37208ae2a84f75e9c038630fa3ef5c1749f98d03e264a9d59def03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bartuś, Katarzyna</creatorcontrib><creatorcontrib>Bródka, Aleksander</creatorcontrib><title>Temperature Study of Structure and Dynamics of Methane in Carbon Nanotubes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Molecular dynamics simulations of methane molecules inside the (15,15) carbon nanotube (CNT) are performed for the temperature range from 173 to 293 K and pressures up to 700 bar. The structural and dynamic properties of 1-site and 5-site models of methane molecules are reported. The atomic model of the molecules increases density of methane in the vicinity of the nanotube wall, and the decrease of temperature increases the molecular density. The 5-site molecules from the contact layer exhibit tripod orientation with respect to the CNT. The diffusion coefficients of molecular translations along the carbon nanotube and rotational motion increase with temperature, and both decrease with pressure. Temperature dependences of the coefficients are described by the Arrhenius equation. Relatively free rotations of the 5-site molecules reduce the activation energies of translational diffusion compared to the energies for the 1-site molecules. The CNT flexibility, introduced by the reactive empirical bond order potential for interactions between carbon atoms of the nanotube, has weak impact on diffusivity of methane molecules. However, motions of the CNT atoms increase slightly the activation energies of the translational diffusion and diminish the energies of the rotational diffusion for higher pressures.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkDtPwzAUhS0EEqUw8A-8MDAE_GziEQXKQwUGyhzd2tciEXEiOxn670kp6sR0j-75dHR0CLnk7IYzwW-bXjNutIlHZMaNFFmutD4-aJWfkrOUGsa0ZFzOyMsa2x4jDGNE-jGMbks7P4k42t8XBEfvtwHa2qad84rDFwSkdaAlxE0X6BuEbhg3mM7JiYfvhBd_d04-lw_r8ilbvT8-l3erDIQ2Q-ZEDlxqVWgnc8EKQAGF8rlGY5ksFpJ5kOi15bky3hSOSRQLBcZp49AzOSfX-1wbu5Qi-qqPdQtxW3FW7UaoDiNM7NWeBZuqphtjmJr9w_0AXQ5bFA</recordid><startdate>20140605</startdate><enddate>20140605</enddate><creator>Bartuś, Katarzyna</creator><creator>Bródka, Aleksander</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140605</creationdate><title>Temperature Study of Structure and Dynamics of Methane in Carbon Nanotubes</title><author>Bartuś, Katarzyna ; Bródka, Aleksander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a259t-d27a135485d37208ae2a84f75e9c038630fa3ef5c1749f98d03e264a9d59def03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartuś, Katarzyna</creatorcontrib><creatorcontrib>Bródka, Aleksander</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartuś, Katarzyna</au><au>Bródka, Aleksander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Study of Structure and Dynamics of Methane in Carbon Nanotubes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-06-05</date><risdate>2014</risdate><volume>118</volume><issue>22</issue><spage>12010</spage><epage>12016</epage><pages>12010-12016</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Molecular dynamics simulations of methane molecules inside the (15,15) carbon nanotube (CNT) are performed for the temperature range from 173 to 293 K and pressures up to 700 bar. The structural and dynamic properties of 1-site and 5-site models of methane molecules are reported. The atomic model of the molecules increases density of methane in the vicinity of the nanotube wall, and the decrease of temperature increases the molecular density. The 5-site molecules from the contact layer exhibit tripod orientation with respect to the CNT. The diffusion coefficients of molecular translations along the carbon nanotube and rotational motion increase with temperature, and both decrease with pressure. Temperature dependences of the coefficients are described by the Arrhenius equation. Relatively free rotations of the 5-site molecules reduce the activation energies of translational diffusion compared to the energies for the 1-site molecules. The CNT flexibility, introduced by the reactive empirical bond order potential for interactions between carbon atoms of the nanotube, has weak impact on diffusivity of methane molecules. However, motions of the CNT atoms increase slightly the activation energies of the translational diffusion and diminish the energies of the rotational diffusion for higher pressures.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp501959r</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-06, Vol.118 (22), p.12010-12016
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp501959r
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Temperature Study of Structure and Dynamics of Methane in Carbon Nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Study%20of%20Structure%20and%20Dynamics%20of%20Methane%20in%20Carbon%20Nanotubes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Bartus%CC%81,%20Katarzyna&rft.date=2014-06-05&rft.volume=118&rft.issue=22&rft.spage=12010&rft.epage=12016&rft.pages=12010-12016&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp501959r&rft_dat=%3Cacs_cross%3Ed281439116%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a259t-d27a135485d37208ae2a84f75e9c038630fa3ef5c1749f98d03e264a9d59def03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true