Loading…

Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film

Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2014-07, Vol.118 (26), p.14449-14456
Main Authors: Tian, Fangyuan, Cerro, Andrew M, Mosier, Amber M, Wayment-Steele, Hannah K, Shine, Ryan S, Park, Aileen, Webster, Elizabeth R, Johnson, Lewis E, Johal, Malkiat S, Benz, Lauren
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63
cites cdi_FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63
container_end_page 14456
container_issue 26
container_start_page 14449
container_title Journal of physical chemistry. C
container_volume 118
creator Tian, Fangyuan
Cerro, Andrew M
Mosier, Amber M
Wayment-Steele, Hannah K
Shine, Ryan S
Park, Aileen
Webster, Elizabeth R
Johnson, Lewis E
Johal, Malkiat S
Benz, Lauren
description Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films.
doi_str_mv 10.1021/jp5041053
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp5041053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a078954216</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63</originalsourceid><addsrcrecordid>eNptkDtOw0AYhFcIJEKg4AbbUFAY9ulHiSycRIqgSGhorN_7UNZKvNGuXYSKK3BFToJRUCqqmeLTaPQhdEvJAyWMPrZ7SQQlkp-hCS04SzIh5fmpi-wSXcXYkpEglE_QfDUEC8pg6DRe9dC4resPuNxAANWb4D6gd77D3mLAL9D5vQ9-iPh9UX1_fuV4vXEdrtx2d40uLGyjufnLKXqrntflPFm-zhbl0zIBnrI-KVKibc4UzU2RZQ1nlBlOUii0kJY3tlCCMJUZIaTWVuRa0EbSIjOUa651yqfo_rirgo8xGFvvg9tBONSU1L8K6pOCkb07sqBi3fohdOOzf7gfZ-RZ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tian, Fangyuan ; Cerro, Andrew M ; Mosier, Amber M ; Wayment-Steele, Hannah K ; Shine, Ryan S ; Park, Aileen ; Webster, Elizabeth R ; Johnson, Lewis E ; Johal, Malkiat S ; Benz, Lauren</creator><creatorcontrib>Tian, Fangyuan ; Cerro, Andrew M ; Mosier, Amber M ; Wayment-Steele, Hannah K ; Shine, Ryan S ; Park, Aileen ; Webster, Elizabeth R ; Johnson, Lewis E ; Johal, Malkiat S ; Benz, Lauren</creatorcontrib><description>Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp5041053</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2014-07, Vol.118 (26), p.14449-14456</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63</citedby><cites>FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tian, Fangyuan</creatorcontrib><creatorcontrib>Cerro, Andrew M</creatorcontrib><creatorcontrib>Mosier, Amber M</creatorcontrib><creatorcontrib>Wayment-Steele, Hannah K</creatorcontrib><creatorcontrib>Shine, Ryan S</creatorcontrib><creatorcontrib>Park, Aileen</creatorcontrib><creatorcontrib>Webster, Elizabeth R</creatorcontrib><creatorcontrib>Johnson, Lewis E</creatorcontrib><creatorcontrib>Johal, Malkiat S</creatorcontrib><creatorcontrib>Benz, Lauren</creatorcontrib><title>Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkDtOw0AYhFcIJEKg4AbbUFAY9ulHiSycRIqgSGhorN_7UNZKvNGuXYSKK3BFToJRUCqqmeLTaPQhdEvJAyWMPrZ7SQQlkp-hCS04SzIh5fmpi-wSXcXYkpEglE_QfDUEC8pg6DRe9dC4resPuNxAANWb4D6gd77D3mLAL9D5vQ9-iPh9UX1_fuV4vXEdrtx2d40uLGyjufnLKXqrntflPFm-zhbl0zIBnrI-KVKibc4UzU2RZQ1nlBlOUii0kJY3tlCCMJUZIaTWVuRa0EbSIjOUa651yqfo_rirgo8xGFvvg9tBONSU1L8K6pOCkb07sqBi3fohdOOzf7gfZ-RZ2w</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>Tian, Fangyuan</creator><creator>Cerro, Andrew M</creator><creator>Mosier, Amber M</creator><creator>Wayment-Steele, Hannah K</creator><creator>Shine, Ryan S</creator><creator>Park, Aileen</creator><creator>Webster, Elizabeth R</creator><creator>Johnson, Lewis E</creator><creator>Johal, Malkiat S</creator><creator>Benz, Lauren</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140703</creationdate><title>Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film</title><author>Tian, Fangyuan ; Cerro, Andrew M ; Mosier, Amber M ; Wayment-Steele, Hannah K ; Shine, Ryan S ; Park, Aileen ; Webster, Elizabeth R ; Johnson, Lewis E ; Johal, Malkiat S ; Benz, Lauren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Fangyuan</creatorcontrib><creatorcontrib>Cerro, Andrew M</creatorcontrib><creatorcontrib>Mosier, Amber M</creatorcontrib><creatorcontrib>Wayment-Steele, Hannah K</creatorcontrib><creatorcontrib>Shine, Ryan S</creatorcontrib><creatorcontrib>Park, Aileen</creatorcontrib><creatorcontrib>Webster, Elizabeth R</creatorcontrib><creatorcontrib>Johnson, Lewis E</creatorcontrib><creatorcontrib>Johal, Malkiat S</creatorcontrib><creatorcontrib>Benz, Lauren</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Fangyuan</au><au>Cerro, Andrew M</au><au>Mosier, Amber M</au><au>Wayment-Steele, Hannah K</au><au>Shine, Ryan S</au><au>Park, Aileen</au><au>Webster, Elizabeth R</au><au>Johnson, Lewis E</au><au>Johal, Malkiat S</au><au>Benz, Lauren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-07-03</date><risdate>2014</risdate><volume>118</volume><issue>26</issue><spage>14449</spage><epage>14456</epage><pages>14449-14456</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp5041053</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-07, Vol.118 (26), p.14449-14456
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp5041053
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20and%20Stability%20Characterization%20of%20a%20Nanoporous%20ZIF%E2%80%918%20Thin%20Film&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Tian,%20Fangyuan&rft.date=2014-07-03&rft.volume=118&rft.issue=26&rft.spage=14449&rft.epage=14456&rft.pages=14449-14456&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp5041053&rft_dat=%3Cacs_cross%3Ea078954216%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true