Loading…
Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film
Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nat...
Saved in:
Published in: | Journal of physical chemistry. C 2014-07, Vol.118 (26), p.14449-14456 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63 |
---|---|
cites | cdi_FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63 |
container_end_page | 14456 |
container_issue | 26 |
container_start_page | 14449 |
container_title | Journal of physical chemistry. C |
container_volume | 118 |
creator | Tian, Fangyuan Cerro, Andrew M Mosier, Amber M Wayment-Steele, Hannah K Shine, Ryan S Park, Aileen Webster, Elizabeth R Johnson, Lewis E Johal, Malkiat S Benz, Lauren |
description | Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films. |
doi_str_mv | 10.1021/jp5041053 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp5041053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a078954216</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63</originalsourceid><addsrcrecordid>eNptkDtOw0AYhFcIJEKg4AbbUFAY9ulHiSycRIqgSGhorN_7UNZKvNGuXYSKK3BFToJRUCqqmeLTaPQhdEvJAyWMPrZ7SQQlkp-hCS04SzIh5fmpi-wSXcXYkpEglE_QfDUEC8pg6DRe9dC4resPuNxAANWb4D6gd77D3mLAL9D5vQ9-iPh9UX1_fuV4vXEdrtx2d40uLGyjufnLKXqrntflPFm-zhbl0zIBnrI-KVKibc4UzU2RZQ1nlBlOUii0kJY3tlCCMJUZIaTWVuRa0EbSIjOUa651yqfo_rirgo8xGFvvg9tBONSU1L8K6pOCkb07sqBi3fohdOOzf7gfZ-RZ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Tian, Fangyuan ; Cerro, Andrew M ; Mosier, Amber M ; Wayment-Steele, Hannah K ; Shine, Ryan S ; Park, Aileen ; Webster, Elizabeth R ; Johnson, Lewis E ; Johal, Malkiat S ; Benz, Lauren</creator><creatorcontrib>Tian, Fangyuan ; Cerro, Andrew M ; Mosier, Amber M ; Wayment-Steele, Hannah K ; Shine, Ryan S ; Park, Aileen ; Webster, Elizabeth R ; Johnson, Lewis E ; Johal, Malkiat S ; Benz, Lauren</creatorcontrib><description>Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp5041053</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2014-07, Vol.118 (26), p.14449-14456</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63</citedby><cites>FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tian, Fangyuan</creatorcontrib><creatorcontrib>Cerro, Andrew M</creatorcontrib><creatorcontrib>Mosier, Amber M</creatorcontrib><creatorcontrib>Wayment-Steele, Hannah K</creatorcontrib><creatorcontrib>Shine, Ryan S</creatorcontrib><creatorcontrib>Park, Aileen</creatorcontrib><creatorcontrib>Webster, Elizabeth R</creatorcontrib><creatorcontrib>Johnson, Lewis E</creatorcontrib><creatorcontrib>Johal, Malkiat S</creatorcontrib><creatorcontrib>Benz, Lauren</creatorcontrib><title>Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkDtOw0AYhFcIJEKg4AbbUFAY9ulHiSycRIqgSGhorN_7UNZKvNGuXYSKK3BFToJRUCqqmeLTaPQhdEvJAyWMPrZ7SQQlkp-hCS04SzIh5fmpi-wSXcXYkpEglE_QfDUEC8pg6DRe9dC4resPuNxAANWb4D6gd77D3mLAL9D5vQ9-iPh9UX1_fuV4vXEdrtx2d40uLGyjufnLKXqrntflPFm-zhbl0zIBnrI-KVKibc4UzU2RZQ1nlBlOUii0kJY3tlCCMJUZIaTWVuRa0EbSIjOUa651yqfo_rirgo8xGFvvg9tBONSU1L8K6pOCkb07sqBi3fohdOOzf7gfZ-RZ2w</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>Tian, Fangyuan</creator><creator>Cerro, Andrew M</creator><creator>Mosier, Amber M</creator><creator>Wayment-Steele, Hannah K</creator><creator>Shine, Ryan S</creator><creator>Park, Aileen</creator><creator>Webster, Elizabeth R</creator><creator>Johnson, Lewis E</creator><creator>Johal, Malkiat S</creator><creator>Benz, Lauren</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140703</creationdate><title>Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film</title><author>Tian, Fangyuan ; Cerro, Andrew M ; Mosier, Amber M ; Wayment-Steele, Hannah K ; Shine, Ryan S ; Park, Aileen ; Webster, Elizabeth R ; Johnson, Lewis E ; Johal, Malkiat S ; Benz, Lauren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Fangyuan</creatorcontrib><creatorcontrib>Cerro, Andrew M</creatorcontrib><creatorcontrib>Mosier, Amber M</creatorcontrib><creatorcontrib>Wayment-Steele, Hannah K</creatorcontrib><creatorcontrib>Shine, Ryan S</creatorcontrib><creatorcontrib>Park, Aileen</creatorcontrib><creatorcontrib>Webster, Elizabeth R</creatorcontrib><creatorcontrib>Johnson, Lewis E</creatorcontrib><creatorcontrib>Johal, Malkiat S</creatorcontrib><creatorcontrib>Benz, Lauren</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Fangyuan</au><au>Cerro, Andrew M</au><au>Mosier, Amber M</au><au>Wayment-Steele, Hannah K</au><au>Shine, Ryan S</au><au>Park, Aileen</au><au>Webster, Elizabeth R</au><au>Johnson, Lewis E</au><au>Johal, Malkiat S</au><au>Benz, Lauren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-07-03</date><risdate>2014</risdate><volume>118</volume><issue>26</issue><spage>14449</spage><epage>14456</epage><pages>14449-14456</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp5041053</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2014-07, Vol.118 (26), p.14449-14456 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp5041053 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Surface and Stability Characterization of a Nanoporous ZIF‑8 Thin Film |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20and%20Stability%20Characterization%20of%20a%20Nanoporous%20ZIF%E2%80%918%20Thin%20Film&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Tian,%20Fangyuan&rft.date=2014-07-03&rft.volume=118&rft.issue=26&rft.spage=14449&rft.epage=14456&rft.pages=14449-14456&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp5041053&rft_dat=%3Cacs_cross%3Ea078954216%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a362t-960df82c18e977b3212e306a9d45f3bf9c402c7e445ddf48d41b5197e13d3dd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |