Loading…

Graphene-Based Sensors: Theoretical Study

Graphene, a 2-dimensional monolayer form of sp2-hybridizated carbon atoms, is attracting increasing attention due to its unique and superior physicochemical properties. Covalently functionalized graphene layers, with their modifiable chemical functionality and useful electrical properties, are excel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2014-08, Vol.118 (31), p.17395-17401
Main Authors: Milowska, Karolina Z, Majewski, Jacek A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a259t-34e7f447853346ad1dd151120fcd318acef57948ad53dc3eb3dd77956b73999f3
cites cdi_FETCH-LOGICAL-a259t-34e7f447853346ad1dd151120fcd318acef57948ad53dc3eb3dd77956b73999f3
container_end_page 17401
container_issue 31
container_start_page 17395
container_title Journal of physical chemistry. C
container_volume 118
creator Milowska, Karolina Z
Majewski, Jacek A
description Graphene, a 2-dimensional monolayer form of sp2-hybridizated carbon atoms, is attracting increasing attention due to its unique and superior physicochemical properties. Covalently functionalized graphene layers, with their modifiable chemical functionality and useful electrical properties, are excellent candidates for a broad range of sensors, suitable for biomedical, optoelectronic, and environmental applications. Here, we present extensive study of transport properties of sensors based on covalently functionalized graphene monolayer (GML) with graphene electrodes. The transmissions, density of states, and current–voltage characteristics supported by analysis of charge distribution of GML functionalized by −CH3, −CH2, −NH2, −NH, and −OH fragments have been calculated by means of density functional theory (DFT) and nonequilibrium Green’s function (NEGF). Further, we demonstrate how to control the device sensitivity by manipulating (i) concentration, (ii) particular arrangement, and (iii) type of surface groups. We explain the underlying detection physical mechanisms. Comparisons of the theoretical results to available experimental data are provided and show good agreement.
doi_str_mv 10.1021/jp504199r
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp504199r</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b715253088</sourcerecordid><originalsourceid>FETCH-LOGICAL-a259t-34e7f447853346ad1dd151120fcd318acef57948ad53dc3eb3dd77956b73999f3</originalsourceid><addsrcrecordid>eNptj71OwzAUhS0EEqUw8AZZGDoYfHPtOmaDqhSkSgwts-Xa12qjkkR2OvTtCSrqxHTO8On8MHYP4hFECU91p4QEY9IFG4HBkmup1OXZS33NbnKuhVAoAEdsskiu21JD_NVlCsWKmtym_Fyst9Qm6nfe7YtVfwjHW3YV3T7T3Z-O2dfbfD1758vPxcfsZcldqUzPUZKOQ0-lEOXUBQgBFEApog8IlfMUlTayckFh8EgbDEFro6YbjcaYiGM2OeX61OacKNou7b5dOloQ9vejPX8c2IcT63y2dXtIzbDsH-4HOpVPBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graphene-Based Sensors: Theoretical Study</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Milowska, Karolina Z ; Majewski, Jacek A</creator><creatorcontrib>Milowska, Karolina Z ; Majewski, Jacek A</creatorcontrib><description>Graphene, a 2-dimensional monolayer form of sp2-hybridizated carbon atoms, is attracting increasing attention due to its unique and superior physicochemical properties. Covalently functionalized graphene layers, with their modifiable chemical functionality and useful electrical properties, are excellent candidates for a broad range of sensors, suitable for biomedical, optoelectronic, and environmental applications. Here, we present extensive study of transport properties of sensors based on covalently functionalized graphene monolayer (GML) with graphene electrodes. The transmissions, density of states, and current–voltage characteristics supported by analysis of charge distribution of GML functionalized by −CH3, −CH2, −NH2, −NH, and −OH fragments have been calculated by means of density functional theory (DFT) and nonequilibrium Green’s function (NEGF). Further, we demonstrate how to control the device sensitivity by manipulating (i) concentration, (ii) particular arrangement, and (iii) type of surface groups. We explain the underlying detection physical mechanisms. Comparisons of the theoretical results to available experimental data are provided and show good agreement.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp504199r</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2014-08, Vol.118 (31), p.17395-17401</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a259t-34e7f447853346ad1dd151120fcd318acef57948ad53dc3eb3dd77956b73999f3</citedby><cites>FETCH-LOGICAL-a259t-34e7f447853346ad1dd151120fcd318acef57948ad53dc3eb3dd77956b73999f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Milowska, Karolina Z</creatorcontrib><creatorcontrib>Majewski, Jacek A</creatorcontrib><title>Graphene-Based Sensors: Theoretical Study</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Graphene, a 2-dimensional monolayer form of sp2-hybridizated carbon atoms, is attracting increasing attention due to its unique and superior physicochemical properties. Covalently functionalized graphene layers, with their modifiable chemical functionality and useful electrical properties, are excellent candidates for a broad range of sensors, suitable for biomedical, optoelectronic, and environmental applications. Here, we present extensive study of transport properties of sensors based on covalently functionalized graphene monolayer (GML) with graphene electrodes. The transmissions, density of states, and current–voltage characteristics supported by analysis of charge distribution of GML functionalized by −CH3, −CH2, −NH2, −NH, and −OH fragments have been calculated by means of density functional theory (DFT) and nonequilibrium Green’s function (NEGF). Further, we demonstrate how to control the device sensitivity by manipulating (i) concentration, (ii) particular arrangement, and (iii) type of surface groups. We explain the underlying detection physical mechanisms. Comparisons of the theoretical results to available experimental data are provided and show good agreement.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptj71OwzAUhS0EEqUw8AZZGDoYfHPtOmaDqhSkSgwts-Xa12qjkkR2OvTtCSrqxHTO8On8MHYP4hFECU91p4QEY9IFG4HBkmup1OXZS33NbnKuhVAoAEdsskiu21JD_NVlCsWKmtym_Fyst9Qm6nfe7YtVfwjHW3YV3T7T3Z-O2dfbfD1758vPxcfsZcldqUzPUZKOQ0-lEOXUBQgBFEApog8IlfMUlTayckFh8EgbDEFro6YbjcaYiGM2OeX61OacKNou7b5dOloQ9vejPX8c2IcT63y2dXtIzbDsH-4HOpVPBg</recordid><startdate>20140807</startdate><enddate>20140807</enddate><creator>Milowska, Karolina Z</creator><creator>Majewski, Jacek A</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140807</creationdate><title>Graphene-Based Sensors: Theoretical Study</title><author>Milowska, Karolina Z ; Majewski, Jacek A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a259t-34e7f447853346ad1dd151120fcd318acef57948ad53dc3eb3dd77956b73999f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milowska, Karolina Z</creatorcontrib><creatorcontrib>Majewski, Jacek A</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milowska, Karolina Z</au><au>Majewski, Jacek A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene-Based Sensors: Theoretical Study</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-08-07</date><risdate>2014</risdate><volume>118</volume><issue>31</issue><spage>17395</spage><epage>17401</epage><pages>17395-17401</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Graphene, a 2-dimensional monolayer form of sp2-hybridizated carbon atoms, is attracting increasing attention due to its unique and superior physicochemical properties. Covalently functionalized graphene layers, with their modifiable chemical functionality and useful electrical properties, are excellent candidates for a broad range of sensors, suitable for biomedical, optoelectronic, and environmental applications. Here, we present extensive study of transport properties of sensors based on covalently functionalized graphene monolayer (GML) with graphene electrodes. The transmissions, density of states, and current–voltage characteristics supported by analysis of charge distribution of GML functionalized by −CH3, −CH2, −NH2, −NH, and −OH fragments have been calculated by means of density functional theory (DFT) and nonequilibrium Green’s function (NEGF). Further, we demonstrate how to control the device sensitivity by manipulating (i) concentration, (ii) particular arrangement, and (iii) type of surface groups. We explain the underlying detection physical mechanisms. Comparisons of the theoretical results to available experimental data are provided and show good agreement.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp504199r</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-08, Vol.118 (31), p.17395-17401
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp504199r
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Graphene-Based Sensors: Theoretical Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene-Based%20Sensors:%20Theoretical%20Study&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Milowska,%20Karolina%20Z&rft.date=2014-08-07&rft.volume=118&rft.issue=31&rft.spage=17395&rft.epage=17401&rft.pages=17395-17401&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp504199r&rft_dat=%3Cacs_cross%3Eb715253088%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a259t-34e7f447853346ad1dd151120fcd318acef57948ad53dc3eb3dd77956b73999f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true