Loading…
Hydrogen Storage in Lithium-Functionalized 3-D Covalent-Organic Framework Materials
To enhance the hydrogen storage ability of covalent-organic framework materials (COFs), we have studied the insertion of lithium alkoxide groups in these materials. First-principles calculations predicted the structure of the lithium alkoxide group in the material and its interaction with multiple h...
Saved in:
Published in: | Journal of physical chemistry. C 2009-12, Vol.113 (50), p.21253-21257 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To enhance the hydrogen storage ability of covalent-organic framework materials (COFs), we have studied the insertion of lithium alkoxide groups in these materials. First-principles calculations predicted the structure of the lithium alkoxide group in the material and its interaction with multiple hydrogen molecules. Grand Canonical Monte Carlo simulations have shown enhanced gravimetric and volumetric hydrogen uptake both at 77 and 300 K and pressures up to 100 bar for the new materials. Lithium alkoxide COF reached 22 wt % and 51 g/L at 77K and 100 bar, while at room temperature overpasses the Department of Energy target for gravimetric uptake (6 wt %). |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp907241y |