Loading…
Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States
In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when t...
Saved in:
Published in: | Journal of physical chemistry (1952) 1996-05, Vol.100 (19), p.8040-8043 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3 |
container_end_page | 8043 |
container_issue | 19 |
container_start_page | 8040 |
container_title | Journal of physical chemistry (1952) |
container_volume | 100 |
creator | Hansen, Nancy Fisher Ross, John |
description | In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when the excess work from one stationary state to the stable inhomogeneous concentration profile separating the two stable stationary states equals the excess work from the other stable stationary state to that profile. Here we prove that any Lyapunov function of the deterministic reaction−diffusion equations of a given form can be used to predict equistability. Further, we show that the spatial derivative of any Lyapunov function for these equations, which is simpler to calculate, can also be used to predict relative stability. |
doi_str_mv | 10.1021/jp952876b |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp952876b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_MH1XR98M_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3</originalsourceid><addsrcrecordid>eNptkL1OwzAUhS0EEqUw8AZeGBgC_okTZ0SFUqRUoLYDm-W4tnBJkyh2CnkDZh6RJ8FtUSeme3T13aN7DgCXGN1gRPDtqskY4WlSHIEBZjGOWBqjYzBAiJCIJiw-BWfOrRBCmFI8ADbvZdNV9QaOu0p5W1cOymoJZ7qU3m40nHtZ2NL6HtoqbOWO-fn6vrfGdC5oOO-d12sHP6x_g9Ou9LYpd3dbUrb9Tmp3Dk6MLJ2--JtDsBg_LEaTKH9-fBrd5ZGkBPuIcM7TDGmjEFcKZ2mCKTYIc5kwplJCDCpkHHShC04zyokqlkuT0jRLuDJ0CK73tqqtnWu1EU1r1-ENgZHYViQOFQU22rM2JPg8gLJ9F0kwZGLxMhfTCX6dZXwq8sBf7XmpnFjVXVuFIP_4_gKbL3dB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States</title><source>ACS CRKN Legacy Archives</source><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hansen, Nancy Fisher ; Ross, John</creator><creatorcontrib>Hansen, Nancy Fisher ; Ross, John</creatorcontrib><description>In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when the excess work from one stationary state to the stable inhomogeneous concentration profile separating the two stable stationary states equals the excess work from the other stable stationary state to that profile. Here we prove that any Lyapunov function of the deterministic reaction−diffusion equations of a given form can be used to predict equistability. Further, we show that the spatial derivative of any Lyapunov function for these equations, which is simpler to calculate, can also be used to predict relative stability.</description><identifier>ISSN: 0022-3654</identifier><identifier>EISSN: 1541-5740</identifier><identifier>DOI: 10.1021/jp952876b</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry (1952), 1996-05, Vol.100 (19), p.8040-8043</ispartof><rights>Copyright © 1996 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3</citedby><cites>FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp952876b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp952876b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27064,27924,27925,56766,56816</link.rule.ids></links><search><creatorcontrib>Hansen, Nancy Fisher</creatorcontrib><creatorcontrib>Ross, John</creatorcontrib><title>Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States</title><title>Journal of physical chemistry (1952)</title><addtitle>J. Phys. Chem</addtitle><description>In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when the excess work from one stationary state to the stable inhomogeneous concentration profile separating the two stable stationary states equals the excess work from the other stable stationary state to that profile. Here we prove that any Lyapunov function of the deterministic reaction−diffusion equations of a given form can be used to predict equistability. Further, we show that the spatial derivative of any Lyapunov function for these equations, which is simpler to calculate, can also be used to predict relative stability.</description><issn>0022-3654</issn><issn>1541-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAUhS0EEqUw8AZeGBgC_okTZ0SFUqRUoLYDm-W4tnBJkyh2CnkDZh6RJ8FtUSeme3T13aN7DgCXGN1gRPDtqskY4WlSHIEBZjGOWBqjYzBAiJCIJiw-BWfOrRBCmFI8ADbvZdNV9QaOu0p5W1cOymoJZ7qU3m40nHtZ2NL6HtoqbOWO-fn6vrfGdC5oOO-d12sHP6x_g9Ou9LYpd3dbUrb9Tmp3Dk6MLJ2--JtDsBg_LEaTKH9-fBrd5ZGkBPuIcM7TDGmjEFcKZ2mCKTYIc5kwplJCDCpkHHShC04zyokqlkuT0jRLuDJ0CK73tqqtnWu1EU1r1-ENgZHYViQOFQU22rM2JPg8gLJ9F0kwZGLxMhfTCX6dZXwq8sBf7XmpnFjVXVuFIP_4_gKbL3dB</recordid><startdate>19960509</startdate><enddate>19960509</enddate><creator>Hansen, Nancy Fisher</creator><creator>Ross, John</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960509</creationdate><title>Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States</title><author>Hansen, Nancy Fisher ; Ross, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Nancy Fisher</creatorcontrib><creatorcontrib>Ross, John</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry (1952)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Nancy Fisher</au><au>Ross, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States</atitle><jtitle>Journal of physical chemistry (1952)</jtitle><addtitle>J. Phys. Chem</addtitle><date>1996-05-09</date><risdate>1996</risdate><volume>100</volume><issue>19</issue><spage>8040</spage><epage>8043</epage><pages>8040-8043</pages><issn>0022-3654</issn><eissn>1541-5740</eissn><abstract>In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when the excess work from one stationary state to the stable inhomogeneous concentration profile separating the two stable stationary states equals the excess work from the other stable stationary state to that profile. Here we prove that any Lyapunov function of the deterministic reaction−diffusion equations of a given form can be used to predict equistability. Further, we show that the spatial derivative of any Lyapunov function for these equations, which is simpler to calculate, can also be used to predict relative stability.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp952876b</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3654 |
ispartof | Journal of physical chemistry (1952), 1996-05, Vol.100 (19), p.8040-8043 |
issn | 0022-3654 1541-5740 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp952876b |
source | ACS CRKN Legacy Archives; American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20Functions%20and%20Relative%20Stability%20in%20Reaction%E2%88%92Diffusion%20Systems%20with%20Multiple%20Stationary%20States&rft.jtitle=Journal%20of%20physical%20chemistry%20(1952)&rft.au=Hansen,%20Nancy%20Fisher&rft.date=1996-05-09&rft.volume=100&rft.issue=19&rft.spage=8040&rft.epage=8043&rft.pages=8040-8043&rft.issn=0022-3654&rft.eissn=1541-5740&rft_id=info:doi/10.1021/jp952876b&rft_dat=%3Cistex_cross%3Eark_67375_TPS_MH1XR98M_L%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |