Loading…

Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States

In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry (1952) 1996-05, Vol.100 (19), p.8040-8043
Main Authors: Hansen, Nancy Fisher, Ross, John
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3
cites cdi_FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3
container_end_page 8043
container_issue 19
container_start_page 8040
container_title Journal of physical chemistry (1952)
container_volume 100
creator Hansen, Nancy Fisher
Ross, John
description In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when the excess work from one stationary state to the stable inhomogeneous concentration profile separating the two stable stationary states equals the excess work from the other stable stationary state to that profile. Here we prove that any Lyapunov function of the deterministic reaction−diffusion equations of a given form can be used to predict equistability. Further, we show that the spatial derivative of any Lyapunov function for these equations, which is simpler to calculate, can also be used to predict relative stability.
doi_str_mv 10.1021/jp952876b
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp952876b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_MH1XR98M_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3</originalsourceid><addsrcrecordid>eNptkL1OwzAUhS0EEqUw8AZeGBgC_okTZ0SFUqRUoLYDm-W4tnBJkyh2CnkDZh6RJ8FtUSeme3T13aN7DgCXGN1gRPDtqskY4WlSHIEBZjGOWBqjYzBAiJCIJiw-BWfOrRBCmFI8ADbvZdNV9QaOu0p5W1cOymoJZ7qU3m40nHtZ2NL6HtoqbOWO-fn6vrfGdC5oOO-d12sHP6x_g9Ou9LYpd3dbUrb9Tmp3Dk6MLJ2--JtDsBg_LEaTKH9-fBrd5ZGkBPuIcM7TDGmjEFcKZ2mCKTYIc5kwplJCDCpkHHShC04zyokqlkuT0jRLuDJ0CK73tqqtnWu1EU1r1-ENgZHYViQOFQU22rM2JPg8gLJ9F0kwZGLxMhfTCX6dZXwq8sBf7XmpnFjVXVuFIP_4_gKbL3dB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States</title><source>ACS CRKN Legacy Archives</source><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hansen, Nancy Fisher ; Ross, John</creator><creatorcontrib>Hansen, Nancy Fisher ; Ross, John</creatorcontrib><description>In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when the excess work from one stationary state to the stable inhomogeneous concentration profile separating the two stable stationary states equals the excess work from the other stable stationary state to that profile. Here we prove that any Lyapunov function of the deterministic reaction−diffusion equations of a given form can be used to predict equistability. Further, we show that the spatial derivative of any Lyapunov function for these equations, which is simpler to calculate, can also be used to predict relative stability.</description><identifier>ISSN: 0022-3654</identifier><identifier>EISSN: 1541-5740</identifier><identifier>DOI: 10.1021/jp952876b</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry (1952), 1996-05, Vol.100 (19), p.8040-8043</ispartof><rights>Copyright © 1996 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3</citedby><cites>FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp952876b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp952876b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27064,27924,27925,56766,56816</link.rule.ids></links><search><creatorcontrib>Hansen, Nancy Fisher</creatorcontrib><creatorcontrib>Ross, John</creatorcontrib><title>Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States</title><title>Journal of physical chemistry (1952)</title><addtitle>J. Phys. Chem</addtitle><description>In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when the excess work from one stationary state to the stable inhomogeneous concentration profile separating the two stable stationary states equals the excess work from the other stable stationary state to that profile. Here we prove that any Lyapunov function of the deterministic reaction−diffusion equations of a given form can be used to predict equistability. Further, we show that the spatial derivative of any Lyapunov function for these equations, which is simpler to calculate, can also be used to predict relative stability.</description><issn>0022-3654</issn><issn>1541-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAUhS0EEqUw8AZeGBgC_okTZ0SFUqRUoLYDm-W4tnBJkyh2CnkDZh6RJ8FtUSeme3T13aN7DgCXGN1gRPDtqskY4WlSHIEBZjGOWBqjYzBAiJCIJiw-BWfOrRBCmFI8ADbvZdNV9QaOu0p5W1cOymoJZ7qU3m40nHtZ2NL6HtoqbOWO-fn6vrfGdC5oOO-d12sHP6x_g9Ou9LYpd3dbUrb9Tmp3Dk6MLJ2--JtDsBg_LEaTKH9-fBrd5ZGkBPuIcM7TDGmjEFcKZ2mCKTYIc5kwplJCDCpkHHShC04zyokqlkuT0jRLuDJ0CK73tqqtnWu1EU1r1-ENgZHYViQOFQU22rM2JPg8gLJ9F0kwZGLxMhfTCX6dZXwq8sBf7XmpnFjVXVuFIP_4_gKbL3dB</recordid><startdate>19960509</startdate><enddate>19960509</enddate><creator>Hansen, Nancy Fisher</creator><creator>Ross, John</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960509</creationdate><title>Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States</title><author>Hansen, Nancy Fisher ; Ross, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Nancy Fisher</creatorcontrib><creatorcontrib>Ross, John</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry (1952)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Nancy Fisher</au><au>Ross, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States</atitle><jtitle>Journal of physical chemistry (1952)</jtitle><addtitle>J. Phys. Chem</addtitle><date>1996-05-09</date><risdate>1996</risdate><volume>100</volume><issue>19</issue><spage>8040</spage><epage>8043</epage><pages>8040-8043</pages><issn>0022-3654</issn><eissn>1541-5740</eissn><abstract>In prior work on a thermodynamic and stochastic theory of chemical systems far from equilibrium, the excess work (a Lyapunov function) was shown to predict relative stability of stationary states in reaction−diffusion systems with multiple stationary states. This theory predicts equistability when the excess work from one stationary state to the stable inhomogeneous concentration profile separating the two stable stationary states equals the excess work from the other stable stationary state to that profile. Here we prove that any Lyapunov function of the deterministic reaction−diffusion equations of a given form can be used to predict equistability. Further, we show that the spatial derivative of any Lyapunov function for these equations, which is simpler to calculate, can also be used to predict relative stability.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp952876b</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3654
ispartof Journal of physical chemistry (1952), 1996-05, Vol.100 (19), p.8040-8043
issn 0022-3654
1541-5740
language eng
recordid cdi_crossref_primary_10_1021_jp952876b
source ACS CRKN Legacy Archives; American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Lyapunov Functions and Relative Stability in Reaction−Diffusion Systems with Multiple Stationary States
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20Functions%20and%20Relative%20Stability%20in%20Reaction%E2%88%92Diffusion%20Systems%20with%20Multiple%20Stationary%20States&rft.jtitle=Journal%20of%20physical%20chemistry%20(1952)&rft.au=Hansen,%20Nancy%20Fisher&rft.date=1996-05-09&rft.volume=100&rft.issue=19&rft.spage=8040&rft.epage=8043&rft.pages=8040-8043&rft.issn=0022-3654&rft.eissn=1541-5740&rft_id=info:doi/10.1021/jp952876b&rft_dat=%3Cistex_cross%3Eark_67375_TPS_MH1XR98M_L%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a321t-2888790efc08cc1976131f018a655c722f0ba4655beb839382cbddf737968cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true