Loading…

Singlet−Singlet Annihilation and Local Heating in FMO Complexes

Energy transfer in a trimeric Bchl a containing FMO pigment−protein complex from the green sulfur bacterium Chlorobium tepidum has been studied by means of picosecond transient absorption spectroscopy under high-excitation conditions. At room temperature the excited state absorption spectrum of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry (1952) 1996-11, Vol.100 (45), p.17950-17956
Main Authors: Gulbinas, Vidmantas, Valkunas, Leonas, Kuciauskas, Darius, Katilius, Evaldas, Liuolia, Vladas, Zhou, Wenli, Blankenship, Robert E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a321t-64756d6aff57121d23811b7fbba2c0d2062abacf3016d4cadc7525ba4614336b3
cites cdi_FETCH-LOGICAL-a321t-64756d6aff57121d23811b7fbba2c0d2062abacf3016d4cadc7525ba4614336b3
container_end_page 17956
container_issue 45
container_start_page 17950
container_title Journal of physical chemistry (1952)
container_volume 100
creator Gulbinas, Vidmantas
Valkunas, Leonas
Kuciauskas, Darius
Katilius, Evaldas
Liuolia, Vladas
Zhou, Wenli
Blankenship, Robert E
description Energy transfer in a trimeric Bchl a containing FMO pigment−protein complex from the green sulfur bacterium Chlorobium tepidum has been studied by means of picosecond transient absorption spectroscopy under high-excitation conditions. At room temperature the excited state absorption spectrum of the FMO complex was found to be similar to that of noninteracting Bchl molecules in solution, which suggests that the influence of exciton coupling on the spectroscopic properties of the FMO complex at room temperature is not substantial. Analysis of the excited state relaxation kinetics in singlet−singlet annihilation conditions shows that the energy transfer from the excited monomer to another excited monomer is independent of the oxidation−reduction state of the complex and is slower than the intermonomer excitation migration rate. The difference spectrum at 77 K resembles the absorption spectrum, showing three exciton subbands. In addition to the singlet−singlet annihilation, the 7 ps rate of which is similar to that at room temperature, and to the intrinsic exciton decay, which is also temperature independent, energy redistribution between exciton states with a mean time of 26 ps is evident. This redistribution is explained as being due to local heating/cooling kinetics stimulated by the excitation pulses.
doi_str_mv 10.1021/jp961272k
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp961272k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_LB19GBL2_J</sourcerecordid><originalsourceid>FETCH-LOGICAL-a321t-64756d6aff57121d23811b7fbba2c0d2062abacf3016d4cadc7525ba4614336b3</originalsourceid><addsrcrecordid>eNptj71OwzAYRS0EEqUw8AZeGBgC_vxLx7aiLSioSC2z5ThOcZs6VRyk8gbMPCJPQlCqTkz36uroSgehayB3QCjcr3cDCVTRzQnqgeCQCMXJKeoRQmnCpODn6CLGNSEEGIMeGi58WJWu-fn6PjQ8DMG_-9I0vgrYhBynlTUlnrl2CSvsA568zPG42u5Kt3fxEp0Vpozu6pB99DZ5XI5nSTqfPo2HaWIYhSaRXAmZS1MUQgGFnLIHgEwVWWaoJTklkprM2IIRkDm3JrdKUJEZLoEzJjPWR7fdr62rGGtX6F3tt6b-1ED0n7s-urds0rE-Nm5_BE290VIxJfTydaHTEQymo5Tq55a_6Xhjo15XH3VoTf75_QVeCmdW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Singlet−Singlet Annihilation and Local Heating in FMO Complexes</title><source>ACS CRKN Legacy Archives</source><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gulbinas, Vidmantas ; Valkunas, Leonas ; Kuciauskas, Darius ; Katilius, Evaldas ; Liuolia, Vladas ; Zhou, Wenli ; Blankenship, Robert E</creator><creatorcontrib>Gulbinas, Vidmantas ; Valkunas, Leonas ; Kuciauskas, Darius ; Katilius, Evaldas ; Liuolia, Vladas ; Zhou, Wenli ; Blankenship, Robert E</creatorcontrib><description>Energy transfer in a trimeric Bchl a containing FMO pigment−protein complex from the green sulfur bacterium Chlorobium tepidum has been studied by means of picosecond transient absorption spectroscopy under high-excitation conditions. At room temperature the excited state absorption spectrum of the FMO complex was found to be similar to that of noninteracting Bchl molecules in solution, which suggests that the influence of exciton coupling on the spectroscopic properties of the FMO complex at room temperature is not substantial. Analysis of the excited state relaxation kinetics in singlet−singlet annihilation conditions shows that the energy transfer from the excited monomer to another excited monomer is independent of the oxidation−reduction state of the complex and is slower than the intermonomer excitation migration rate. The difference spectrum at 77 K resembles the absorption spectrum, showing three exciton subbands. In addition to the singlet−singlet annihilation, the 7 ps rate of which is similar to that at room temperature, and to the intrinsic exciton decay, which is also temperature independent, energy redistribution between exciton states with a mean time of 26 ps is evident. This redistribution is explained as being due to local heating/cooling kinetics stimulated by the excitation pulses.</description><identifier>ISSN: 0022-3654</identifier><identifier>EISSN: 1541-5740</identifier><identifier>DOI: 10.1021/jp961272k</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry (1952), 1996-11, Vol.100 (45), p.17950-17956</ispartof><rights>Copyright © 1996 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a321t-64756d6aff57121d23811b7fbba2c0d2062abacf3016d4cadc7525ba4614336b3</citedby><cites>FETCH-LOGICAL-a321t-64756d6aff57121d23811b7fbba2c0d2062abacf3016d4cadc7525ba4614336b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp961272k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp961272k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27063,27923,27924,56765,56815</link.rule.ids></links><search><creatorcontrib>Gulbinas, Vidmantas</creatorcontrib><creatorcontrib>Valkunas, Leonas</creatorcontrib><creatorcontrib>Kuciauskas, Darius</creatorcontrib><creatorcontrib>Katilius, Evaldas</creatorcontrib><creatorcontrib>Liuolia, Vladas</creatorcontrib><creatorcontrib>Zhou, Wenli</creatorcontrib><creatorcontrib>Blankenship, Robert E</creatorcontrib><title>Singlet−Singlet Annihilation and Local Heating in FMO Complexes</title><title>Journal of physical chemistry (1952)</title><addtitle>J. Phys. Chem</addtitle><description>Energy transfer in a trimeric Bchl a containing FMO pigment−protein complex from the green sulfur bacterium Chlorobium tepidum has been studied by means of picosecond transient absorption spectroscopy under high-excitation conditions. At room temperature the excited state absorption spectrum of the FMO complex was found to be similar to that of noninteracting Bchl molecules in solution, which suggests that the influence of exciton coupling on the spectroscopic properties of the FMO complex at room temperature is not substantial. Analysis of the excited state relaxation kinetics in singlet−singlet annihilation conditions shows that the energy transfer from the excited monomer to another excited monomer is independent of the oxidation−reduction state of the complex and is slower than the intermonomer excitation migration rate. The difference spectrum at 77 K resembles the absorption spectrum, showing three exciton subbands. In addition to the singlet−singlet annihilation, the 7 ps rate of which is similar to that at room temperature, and to the intrinsic exciton decay, which is also temperature independent, energy redistribution between exciton states with a mean time of 26 ps is evident. This redistribution is explained as being due to local heating/cooling kinetics stimulated by the excitation pulses.</description><issn>0022-3654</issn><issn>1541-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNptj71OwzAYRS0EEqUw8AZeGBgC_vxLx7aiLSioSC2z5ThOcZs6VRyk8gbMPCJPQlCqTkz36uroSgehayB3QCjcr3cDCVTRzQnqgeCQCMXJKeoRQmnCpODn6CLGNSEEGIMeGi58WJWu-fn6PjQ8DMG_-9I0vgrYhBynlTUlnrl2CSvsA568zPG42u5Kt3fxEp0Vpozu6pB99DZ5XI5nSTqfPo2HaWIYhSaRXAmZS1MUQgGFnLIHgEwVWWaoJTklkprM2IIRkDm3JrdKUJEZLoEzJjPWR7fdr62rGGtX6F3tt6b-1ED0n7s-urds0rE-Nm5_BE290VIxJfTydaHTEQymo5Tq55a_6Xhjo15XH3VoTf75_QVeCmdW</recordid><startdate>19961107</startdate><enddate>19961107</enddate><creator>Gulbinas, Vidmantas</creator><creator>Valkunas, Leonas</creator><creator>Kuciauskas, Darius</creator><creator>Katilius, Evaldas</creator><creator>Liuolia, Vladas</creator><creator>Zhou, Wenli</creator><creator>Blankenship, Robert E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19961107</creationdate><title>Singlet−Singlet Annihilation and Local Heating in FMO Complexes</title><author>Gulbinas, Vidmantas ; Valkunas, Leonas ; Kuciauskas, Darius ; Katilius, Evaldas ; Liuolia, Vladas ; Zhou, Wenli ; Blankenship, Robert E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a321t-64756d6aff57121d23811b7fbba2c0d2062abacf3016d4cadc7525ba4614336b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulbinas, Vidmantas</creatorcontrib><creatorcontrib>Valkunas, Leonas</creatorcontrib><creatorcontrib>Kuciauskas, Darius</creatorcontrib><creatorcontrib>Katilius, Evaldas</creatorcontrib><creatorcontrib>Liuolia, Vladas</creatorcontrib><creatorcontrib>Zhou, Wenli</creatorcontrib><creatorcontrib>Blankenship, Robert E</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry (1952)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulbinas, Vidmantas</au><au>Valkunas, Leonas</au><au>Kuciauskas, Darius</au><au>Katilius, Evaldas</au><au>Liuolia, Vladas</au><au>Zhou, Wenli</au><au>Blankenship, Robert E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singlet−Singlet Annihilation and Local Heating in FMO Complexes</atitle><jtitle>Journal of physical chemistry (1952)</jtitle><addtitle>J. Phys. Chem</addtitle><date>1996-11-07</date><risdate>1996</risdate><volume>100</volume><issue>45</issue><spage>17950</spage><epage>17956</epage><pages>17950-17956</pages><issn>0022-3654</issn><eissn>1541-5740</eissn><abstract>Energy transfer in a trimeric Bchl a containing FMO pigment−protein complex from the green sulfur bacterium Chlorobium tepidum has been studied by means of picosecond transient absorption spectroscopy under high-excitation conditions. At room temperature the excited state absorption spectrum of the FMO complex was found to be similar to that of noninteracting Bchl molecules in solution, which suggests that the influence of exciton coupling on the spectroscopic properties of the FMO complex at room temperature is not substantial. Analysis of the excited state relaxation kinetics in singlet−singlet annihilation conditions shows that the energy transfer from the excited monomer to another excited monomer is independent of the oxidation−reduction state of the complex and is slower than the intermonomer excitation migration rate. The difference spectrum at 77 K resembles the absorption spectrum, showing three exciton subbands. In addition to the singlet−singlet annihilation, the 7 ps rate of which is similar to that at room temperature, and to the intrinsic exciton decay, which is also temperature independent, energy redistribution between exciton states with a mean time of 26 ps is evident. This redistribution is explained as being due to local heating/cooling kinetics stimulated by the excitation pulses.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp961272k</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3654
ispartof Journal of physical chemistry (1952), 1996-11, Vol.100 (45), p.17950-17956
issn 0022-3654
1541-5740
language eng
recordid cdi_crossref_primary_10_1021_jp961272k
source ACS CRKN Legacy Archives; American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Singlet−Singlet Annihilation and Local Heating in FMO Complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singlet%E2%88%92Singlet%20Annihilation%20and%20Local%20Heating%20in%20FMO%20Complexes&rft.jtitle=Journal%20of%20physical%20chemistry%20(1952)&rft.au=Gulbinas,%20Vidmantas&rft.date=1996-11-07&rft.volume=100&rft.issue=45&rft.spage=17950&rft.epage=17956&rft.pages=17950-17956&rft.issn=0022-3654&rft.eissn=1541-5740&rft_id=info:doi/10.1021/jp961272k&rft_dat=%3Cistex_cross%3Eark_67375_TPS_LB19GBL2_J%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a321t-64756d6aff57121d23811b7fbba2c0d2062abacf3016d4cadc7525ba4614336b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true